A number theory problem by muhammad manaf

n 3 + 6 0 (mod n+2) \large n^3+6 \equiv 0 \text{ (mod n+2)}

How many integer n n satisfy the congruence above?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 19, 2018

n 3 + 6 0 (mod n+2) ( ( n + 2 ) 2 ) 3 + 6 0 (mod n+2) ( n + 2 ) 3 3 ( n + 2 ) 2 ( 2 ) + 3 ( n + 2 ) ( 2 2 ) 2 3 + 6 0 (mod n+2) 8 + 6 0 (mod n+2) 2 0 (mod n+2) \begin{aligned} n^3 + 6 & \equiv 0 \text{ (mod n+2)} \\ ({\color{#3D99F6}(n+2)}-2)^3 + 6 & \equiv 0 \text{ (mod n+2)} \\ {\color{#3D99F6}(n+2)}^3 - 3{\color{#3D99F6}(n+2)}^2(2) + 3{\color{#3D99F6}(n+2)}(2^2) - 2^3 + 6 & \equiv 0 \text{ (mod n+2)} \\ - 8 + 6 & \equiv 0 \text{ (mod n+2)} \\ - 2 & \equiv 0 \text{ (mod n+2)} \end{aligned}

Since the factors of 2 -2 are 2 , 1 , 1 , 2 -2,-1,1,2 , we have n + 2 = { 2 n = 4 1 n = 3 1 n = 1 2 n = 0 n+2 = \begin{cases} - 2 & \implies n = -4 \\ -1 & \implies n=-3 \\ 1 & \implies n=-1 \\ 2 & \implies n=0 \end{cases} , a total of 4 \boxed{4} n n 's that satisfy the congruence.

Sir, how did you eliminate ( n + 2 ) 3 (n+2)^3 ?

Aman thegreat - 3 years, 3 months ago

Log in to reply

( n + 2 ) 3 m o d ( n + 2 ) = 0 (n+2)^3 \bmod (n+2) = 0 .

Chew-Seong Cheong - 3 years, 3 months ago
Muhammad Manaf
Feb 18, 2018

n 3 + 6 0 ( m o d n + 2 ) n^3+6\equiv0\pmod{n+2} n 3 + 6 n 3 + 2 n 2 ( m o d n + 2 ) n^3+6\equiv n^3+2n^2\pmod{n+2} 2 n 2 6 ( m o d n + 2 ) 2n^2\equiv6\pmod{n+2} 2 n 2 2 n 2 + 4 n + 6 ( m o d n + 2 ) 2n^2\equiv2n^2+4n+6\pmod{n+2} 4 n + 6 0 ( m o d n + 2 ) 4n+6\equiv0\pmod{n+2} 4 n + 6 4 n + 8 ( m o d n + 2 ) 4n+6\equiv4n+8\pmod{n+2} 2 0 ( m o d n + 2 ) 2\equiv0\pmod{n+2}

So,n+2 is the factor of 2 (the negative too)

n + 2 = { 2 , 1 , 1 , 2 } n+2=\{-2,-1,1,2\} n = { 4 , 3 , 1 , 0 } n=\{-4,-3,-1,0\} there is 4 \boxed{4} n's satisfying the equation

You have a typo in the solution 2 0 m o d ( n + 2 ) -2\equiv 0\mod(n+2) .

Naren Bhandari - 3 years, 2 months ago

Yeah,it's wrong

Muhammad Dihya - 2 years, 3 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...