Find the number of positive integers n ≤ 1 9 9 1 such that 6 ∣ ( n 2 + 3 n + 2 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
6 ∣ n 2 + 3 n + 2 , , , , , 6 ∣ ( n + 1 ) ( n + 2 ) , , , , , , , , , , , ( n + 1 ) ( n + 2 ) ≡ 0 ( m o d 6 ) t h e n t h e r e c a n b e 4 c a s e s : c a s e : 1 ( n + 1 ) ≡ 0 ( m o d 6 ) a n d ( n + 2 ) ≡ 1 ( m o d 6 ) f u r t h e r w e g e t n ≡ − 1 ( m o d 6 ) o r n ≡ 5 ( m o d 6 ) m e a n s n w i l l b e o f t h e f o r m 6 k + 5 w h e r e k i s a n y n a t u r a l n u m b e r c a s e : 2 ( n + 2 ) ≡ 0 ( m o d 6 ) a n d t h e n ( n + 1 ) ≡ 5 ( m o d 6 ) n ≡ 4 ( m o d 6 ) m e a n s n w i l l b e o f t h e f o r m 6 k + 4 w h e r e k i s a n y n a t u r a l n u m b e r c a s e : 3 ( n + 1 ) ≡ 2 ( m o d 6 ) a n d t h e n ( n + 2 ) ≡ 3 ( m o d 6 ) n ≡ 1 ( m o d 6 ) m e a n s n w i l l b e o f t h e f o r m 6 k + 1 w h e r e k i s a n y n a t u r a l n u m b e r c a s e : 4 ( n + 1 ) ≡ 3 ( m o d 6 ) a n d t h e n ( n + 2 ) ≡ 4 ( m o d 6 ) n ≡ 2 ( m o d 6 ) m e a n s n w i l l b e o f t h e f o r m 6 k + 2 w h e r e k i s a n y n a t u r a l n u m b e r t h e r e f o r e n w i l l b e a n u m b e r o f t h e f o r m 6 k + 1 o r 6 k + 2 o r 6 k + 4 o r 6 k + 5 f o r k = 0 t h e n u m b e r s o b t a i n e d a r e 1 , 2 , 4 , 5 n o w w e k n o w t h a t m a x i m u m p o s s i b l e v a l u e o f n = 1 9 9 1 r e m ( 1 9 9 1 ÷ 6 ) = 5 t h e r e f o r i t i s a n u m b e r o f t h e f o r m 6 k + 5 a n d q u o t i e n t ( 1 9 9 1 ÷ 6 ) = 3 3 1 s o t h e r e a r e 3 3 1 n u m b e r s g r e a t e r t h a n 6 a n d l e s s t h a n 1 9 9 2 w h i c h a r e o f t h i s f o r m a n d 1 n u m b e r " 5 " s o t o t a l 3 3 2 n u m b e r s o f t h i s f o r m . s i m i l a r l y w e f i n d n o . s o f t h e f o r m 6 k + 4 , 6 k + 1 , 6 k + 2 a r e a l l 3 3 2 e a c h s o t o t a l 1 3 2 8
Problem Loading...
Note Loading...
Set Loading...
n 2 + 3 n + 2 is divisible by 2 for all n (check cases where n is even or odd). Thus it is sufficient to find cases where 3 ∣ n 2 + 3 n + 2 .
Factor as ( n + 2 ) ( n + 1 ) . Then this is not a multiple of 3 when 3 ∤ n + 2 and 3 ∤ n + 1 , which occurs only when 3 ∣ n . Thus we want 1 9 9 1 − ⌊ 3 1 9 9 1 ⌋ = 1 3 2 8 .