Ignited Integrals 4

Calculus Level 4

0 x 4 e x d x \large \int_0^\infty \sqrt[4]x e^{-\sqrt x} \, dx

If the value of the integral above is in the form A B π \dfrac AB \sqrt\pi , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let 0 x 1 4 e x d x = I \int_{0}^{\infty }{x^{\frac{1}{4}}}e^{-\sqrt[]{x}}dx = I

Putting , x = t \sqrt{x}=t or x = t 2 x=t^{2} and d x = 2 t d t dx=2tdt in above equation , we get ,

I = 0 t 1 2 e t 2 t d t = 2 0 t 3 2 e t d t = 2 Γ ( 5 2 ) I=\int_{0}^{\infty }t^{\frac{1}{2}}e^{-t}2tdt=2\int_{0}^{\infty}t^{\frac{3}{2}}e^{-t}dt=2\Gamma (\frac{5}{2})

And hence , by definition ,

= 2. 3 2 Γ ( 3 2 ) = 2. 3 2 . 1 2 Γ ( 1 2 ) = 3 π 2 =2.\frac{3}{2}\Gamma (\frac{3}{2}) = 2.\frac{3}{2}.\frac{1}{2}\Gamma (\frac{1}{2})= \frac{3\sqrt{\pi }}{2}

So , here , A A = 3 and B B = 2 so , A + B = 5 A+B = {\color{magenta} 5}

most of all your problems beta is the key

Mardokay Mosazghi - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...