IIT JEE 1982 Maths - 'Adapted' - Subjective to Multi-Correct Q10

Algebra Level 2

f ( n ) = 1 1 + 2 + 1 2 + 3 + 1 3 + 2 + . . . + 1 n 1 + n f(n)=\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\frac{1}{\sqrt3+2}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}

For f ( n ) f(n) as defined above, which of the following options are correct?

  • A: f ( 10 ) = 2 f(10)=2
  • B: f ( 15 ) = 3 f(15)=3
  • C: f ( 20 ) = 4 f(20)=4
  • D: f ( 25 ) = 5 f(25)=5

Enter your answer as a 4-digit string of 1s and 9s - 1 for correct option, 9 for wrong. For example: if A and B are correct, and C and D are incorrect, enter 1199. None, one or all may also be correct.


In case you are preparing for IIT JEE, you may want to try IIT JEE 1982 Mathematics Archives .


The answer is 9999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zee Ell
Dec 19, 2016

1 n 1 + n = 1 n 1 + n × n n 1 n n 1 = n n 1 n ( n 1 ) = n n 1 \frac {1}{ \sqrt {n-1} + \sqrt {n} } = \frac {1}{ \sqrt {n-1} + \sqrt {n} } × \frac { \sqrt {n} - \sqrt {n-1} }{ \sqrt {n} - \sqrt {n-1} } = \frac { \sqrt {n} - \sqrt {n-1} }{n - (n-1)} = \sqrt {n} - \sqrt {n-1}

Applying this for all terms in f(n), we get the following telescopic sum:

f ( n ) = ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + . . . + ( n 1 n 2 ) + ( n n 1 ) = n 1 f(n) = ( \sqrt {2} - 1) + ( \sqrt {3} - \sqrt {2} ) + ( \sqrt {4} - \sqrt {3} ) + ... + ( \sqrt {n - 1} - \sqrt {n - 2} ) + ( \sqrt {n} - \sqrt {n - 1} ) = \sqrt {n} - 1

Hence, all of the statements are false:

f ( 10 ) = 10 1 2 f(10) = \sqrt {10} - 1 ≠ 2

f ( 15 ) = 15 1 3 f(15) = \sqrt {15} - 1 ≠ 3

f ( 20 ) = 20 1 4 f(20) = \sqrt {20} - 1 ≠ 4

f ( 25 ) = 25 1 = 5 1 = 4 5 f(25) = \sqrt {25} - 1 = 5 - 1 = 4 ≠ 5

Therefore, our answer should be:

9999 \boxed {9999}

Md Zuhair
Dec 19, 2016

By conjugate multiplication, we can see that f ( n ) f(n) comes out after cutting each other that f ( n ) f(n) = n \sqrt{n} - 1

Hence it satisfies none of A,B,C,D Hence answer 9999.

Chew-Seong Cheong
Dec 24, 2016

f ( n ) = 1 1 + 2 + 1 2 + 3 + 1 3 + 4 + . . . + 1 n 1 + n = k = 2 n 1 k 1 + k = k = 2 n k k 1 ( k + k 1 ) ( k k 1 ) = k = 2 n k k 1 k ( k 1 ) = k = 2 n ( k k 1 ) = k = 2 n k k = 1 n 1 k = n 1 \begin{aligned} f(n) & = \frac 1{\sqrt 1+\sqrt 2} + \frac 1{\sqrt 2+\sqrt 3} + \frac 1{\sqrt 3+\sqrt 4} + ... + \frac 1{\sqrt {n-1}+\sqrt n} \\ & = \sum_{k=2}^n \frac 1{\sqrt{k-1}+\sqrt k} \\ & = \sum_{k=2}^n \frac {\sqrt k - \sqrt {k-1}}{(\sqrt k + \sqrt {k-1})(\sqrt k - \sqrt {k-1})} \\ & = \sum_{k=2}^n \frac {\sqrt k - \sqrt {k-1}}{k-(k-1)} \\ & = \sum_{k=2}^n \left( \sqrt k - \sqrt {k-1} \right) \\ & = \sum_{k=2}^n \sqrt k - \sum_{k=1}^{n-1} \sqrt k \\ & = \sqrt n - 1 \end{aligned}

{ f ( 10 ) = 10 1 2 f ( 15 ) = 15 1 3 f ( 20 ) = 20 1 4 f ( 25 ) = 25 1 5 \implies \begin{cases} f(10) = \sqrt {10} - 1 \color{#D61F06} \ne 2 \\ f(15) = \sqrt {15} - 1 \color{#D61F06} \ne 3 \\ f(20) = \sqrt {20} - 1 \color{#D61F06} \ne 4 \\ f(25) = \sqrt {25} - 1 \color{#D61F06} \ne 5 \end{cases} \implies the answer is 9999 \boxed{9999} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...