IIT JEE 1982 Maths - 'Adapted' - Subjective to Multi-Correct Q19

Calculus Level pending

1 3 2 x sin ( π x ) d x = i = 1 n a i b i π i \large \int_{-1}^\frac 32 |x \sin (\pi x)| \ dx = \sum_{i=1}^n \frac {a_i}{b_i \pi^i}

Given the above is true for a i , b i N a_i, b_i \in \mathbb N and a i , b i 6 a_i, b_i ≤6 , then which of the following statements are true simultaneously?

  • A: n = 2 n=2
  • B: a 1 = 3 a_1=3
  • C: b 1 = 3 b_1=3
  • D: a 2 = 1 a_2=1

Enter your answer as a 4-digit string of 1s and 9s – 1 for correct option, 9 for wrong. For example: if statements A and B are correct, and C and D are incorrect, enter 1199. None, one or all may also be correct.


In case you are preparing for IIT JEE, you may want to try IIT JEE 1982 Mathematics Archives .


The answer is 1191.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 26, 2016

I = 1 3 2 x sin ( π x ) d x = 1 0 x sin ( π x ) d x + 0 3 2 x sin ( π x ) d x Note that sin ( π x ) < 0 , 1 < x < 0 = 0 1 x sin ( π x ) d x + 0 1 x sin ( π x ) d x + 1 3 2 x sin ( π x ) d x Note that sin ( π x ) < 0 , 1 < x 3 2 = 0 1 x sin ( π x ) d x + 0 1 x sin ( π x ) d x 1 3 2 x sin ( π x ) d x = 2 0 1 x sin ( π x ) d x 1 3 2 x sin ( π x ) d x By integration by parts = 2 x cos ( π x ) π 0 1 + 2 0 1 cos ( π x ) π d x + x cos ( π x ) π 1 3 2 1 3 2 cos ( π x ) π d x = 2 π + 2 sin ( π x ) π 2 0 1 + 1 π sin ( π x ) π 2 1 3 2 = 2 π + 0 + 1 π + 1 π 2 1 3 2 = 3 π + 1 π 2 = i = 1 2 a i b i π i \begin{aligned} I & = \int_{-1}^\frac 32 |x \sin (\pi x)| \ dx \\ & = {\color{#3D99F6}\int_{-1}^0 |x \sin (\pi x)| \ dx} + {\color{#D61F06}\int_0^\frac 32 |x \sin (\pi x)| \ dx} & \small \color{#3D99F6} \text{Note that } \sin (\pi x) < 0, \ -1< x < 0 \\ & = {\color{#3D99F6}\int_0^1 x \sin (\pi x) \ dx} + {\color{#D61F06}\int_0^1 |x \sin (\pi x)| \ dx + \int_1^\frac 32 |x \sin (\pi x)| \ dx} & \small \color{#D61F06} \text{Note that } \sin (\pi x) < 0, \ 1 < x \le \frac 32 \\ & = \int_0^1 x \sin (\pi x) \ dx + {\color{#D61F06}\int_0^1 x \sin (\pi x) \ dx - \int_1^\frac 32 x \sin (\pi x) \ dx} \\ & = 2 \int_0^1 x \sin (\pi x) \ dx - \int_1^\frac 32 x \sin (\pi x) \ dx & \small \color{#3D99F6}\text{By integration by parts} \\ & = -\frac {2x\cos (\pi x)}\pi \bigg|_0^1 + 2\int_0^1 \frac {\cos (\pi x)}\pi dx + \frac {x\cos (\pi x)}\pi \bigg|_1^\frac 32 - \int_1^\frac 32 \frac {\cos (\pi x)}\pi dx \\ & = \frac 2 \pi + \frac {2 \sin (\pi x)}{\pi^2} \bigg|_0^1 + \frac 1 \pi - \frac {\sin (\pi x)}{\pi^2} \bigg|_1^\frac 32 \\ & = \frac 2 \pi + 0 + \frac 1 \pi + \frac 1{\pi^2} \bigg|_1^\frac 32 \\ & = \frac 3 \pi + \frac 1{\pi^2} = \sum_{i=1}^2 \frac {a_i}{b_i\pi^i} \end{aligned}

Let us check the statements:

  • A: n = 2 n=2 --- true (1)
  • B: a 1 = 3 a_1=3 --- true (1)
  • C: b 1 = 1 3 b_1=1 \ne 3 --- false (9)
  • D: a 2 = 1 a_2=1 --- true (1)

Therefore, the answer is 1191 \boxed{1191} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...