IIT JEE 1982 Maths - 'Adapted' - Subjective to Multi-Correct Q4

Geometry Level 3

Which of the following is/are correct regarding the points of intersection of the curves y = cos x y=\cos x and y = sin 3 x y=\sin3x from x = π 2 x=-\frac{\pi}2 to x = π 2 x=\frac\pi{2} (both lines inclusive)?

  • (A) There are a total of 3 points of intersections.
  • (B) Exactly one point of intersection has positive abscissa and exactly two have negative abscissa.
  • (C) If y 1 y_1 and y 2 y_2 are the ordinates of 2 of the points, then it is possible that y 1 2 + y 2 2 = 1 y_1^2+y_2^2=1 .
  • (D) The sum of the abscissae of the points of intersections is 0.

Enter your answer as a 4 digit string of 1s and 9s - 1 for correct option, 9 for wrong. Eg. 1199 indicates A and B are correct, C and D are incorrect. None, one or all may also be correct.


In case you are preparing for IIT JEE, you may want to try IIT JEE 1982 Mathematics Archives .


The answer is 1911.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Huang
Dec 11, 2016

Since the problem asks about the coordinates and number of intersection points, the objective is to determine the solutions for the following cos ( x ) = sin ( 3 x ) \cos(x) = \sin(3x)


Trigonometry Arithmetic

Applying the following triple-angle identity sin ( 3 x ) = 3 sin ( x ) 4 sin 3 ( x ) \sin(3x) = 3\sin(x) - 4\sin^3(x) transforms the given equation to cos ( x ) = 3 sin ( x ) 4 sin 3 ( x ) \cos(x) = 3\sin(x) - 4\sin^3(x) Squaring both sides, ( cos ( x ) ) = ( 3 sin ( x ) 4 sin 3 ( x ) ) 2 cos 2 ( x ) = 9 sin 2 ( x ) 24 sin 4 ( x ) + 16 sin 6 ( x ) 1 sin 2 ( x ) = 9 sin 2 ( x ) 24 sin 4 ( x ) + 16 sin 6 ( x ) Pythagorean identity: sin 2 ( x ) + cos 2 ( x ) = 1 0 = 16 sin 6 ( x ) 24 sin 4 ( x ) + 10 sin 2 ( x ) 1 \begin{array}{rlccl} \left(\cos(x)\right) &= \left(3\sin(x) - 4\sin^3(x)\right)^2\\ \cos^2(x) &= 9\sin^2(x) - 24\sin^4(x) + 16\sin^6(x)\\ 1 - \sin^2(x) &= 9\sin^2(x) - 24\sin^4(x) + 16\sin^6(x) & & & {\color{#3D99F6}\text{Pythagorean identity:}\sin^2(x) + \cos^2(x) = 1}\\ 0 &= 16\sin^6(x) - 24\sin^4(x) + 10\sin^2(x) - 1 \end{array} Letting u = sin 2 ( x ) u = \sin^2(x) , we have 0 = 16 u 3 24 u 2 + 10 u 1 0 = 16u^3 - 24u^2 + 10u - 1 Factorizing, 0 = 16 u 3 + ( 8 u 2 16 u 2 ) + ( 8 u + 2 u ) 1 = ( 16 u 3 8 u 2 ) + ( 16 u 2 + 8 u ) + ( 2 u 1 ) = 8 u 2 ( 2 u 1 ) 8 u ( 2 u 1 ) + 1 ( 2 u 1 ) = ( 2 u 1 ) ( 8 u 2 8 u + 1 ) \begin{array}{rl} 0 &= 16u^3 + \left(-8u^2 - 16u^2\right) + \left(8u + 2u\right) - 1\\ &= \left(16u^3 - 8u^2\right) + \left(-16u^2 + 8u\right) + \left(2u - 1\right)\\ &= 8u^2\left(2u - 1\right) - 8u\left(2u - 1\right) + 1\left(2u - 1\right)\\ &= \left(2u - 1\right)\left(8u^2 - 8u + 1\right) \end{array} Either (1) 2 u 1 = 0 2u - 1 = 0 or (2) 8 u 2 8 u + 1 = 0 8u^2 - 8u + 1 = 0 .

Case 1

If 2 u 1 = 0 2u - 1 = 0 , then u = 1 2 sin 2 ( x ) = 1 2 sin ( x ) = ± 1 2 \begin{array}{rl} u &= \dfrac{1}{2}\\ \sin^2(x) &= \dfrac{1}{2}\\ \sin(x) &= \pm \dfrac{1}{\sqrt{2}}\\ \end{array} If sin ( x ) = 1 2 \sin(x) = -\dfrac{1}{\sqrt{2}} , then x = π 4 x = -\dfrac{\pi}{4} . But since cos > 0 \cos > 0 and sin < 0 \sin < 0 at that point, this solution does not work.

Otherwise, if sin ( x ) = 1 2 \sin(x) = \dfrac{1}{\sqrt{2}} , then x = π 4 x = \dfrac{\pi}{4} .

Case 2

Otherwise, 8 u 2 8 u + 1 = 0 8u^2 - 8u + 1 = 0 . Completing the squares , 8 ( u 2 u + 1 8 ) = 0 u 2 u + 1 4 + 1 8 1 4 = 0 Constant factor excluded ( u 1 2 ) 2 = 1 8 Factor u 2 u + 1 4 and arrange terms u = 1 2 ± 2 4 Result after few steps = 2 ± 2 4 \begin{array}{rlccl} 8\left(u^2 - u + \dfrac{1}{8}\right) &= 0\\ u^2 - u + \dfrac{1}{4} + \dfrac{1}{8} - \dfrac{1}{4} &= 0 & & & {\color{#3D99F6}\text{Constant factor excluded}}\\ \left(u - \dfrac{1}{2}\right)^2 &= \dfrac{1}{8} & & & {\color{#3D99F6}\text{Factor }u^2 - u + \dfrac{1}{4}\text{ and arrange terms}}\\ u &= \dfrac{1}{2} \pm \dfrac{\sqrt{2}}{4} & & & {\color{#3D99F6}\text{Result after few steps}}\\ &= \dfrac{2 \pm \sqrt{2}}{4} \end{array} Instead of setting both sides by arcsin \arcsin , consider the following half-angle trigonometry identity: sin ( α 2 ) = ± 1 cos ( α ) 2 \sin\left(\dfrac{\alpha}{2}\right) = \pm \sqrt{\dfrac{1 - \cos(\alpha)}{2}} Squaring both sides, sin 2 ( α 2 ) = 1 2 ( 1 cos ( α ) ) \sin^2\left(\dfrac{\alpha}{2}\right) = \dfrac{1}{2}\left(1 - \cos(\alpha)\right) With this type of relationship, we can express sin 2 ( x ) \sin^2(x) as sin 2 ( x ) = 1 2 ( 1 ± 2 2 ) = 1 2 ( 1 cos ( 2 x ) ) \sin^2(x) = \dfrac{1}{2}\left(1 \pm \dfrac{\sqrt{2}}{2}\right) = \dfrac{1}{2}\left(1 - \cos(2x)\right) where 1 ± 2 2 = 1 cos ( 2 x ) cos ( 2 x ) = ± 2 2 2 x = ± π 4 + π k For k Z x = ± π 8 + k π 2 x = { π 8 , 3 π 8 } Finding all solutions for π 2 x π 2 \begin{array}{rlccl} 1 \pm \dfrac{\sqrt{2}}{2} &= 1 - \cos(2x)\\ \cos(2x) &= \pm \dfrac{\sqrt{2}}{2}\\ 2x &= \pm\dfrac{\pi}{4} + \pi k & & & {\color{#3D99F6}\text{For }k \in \mathbb{Z}}\\ x &= \pm\dfrac{\pi}{8} + \dfrac{k\pi}{2}\\ x &= \left\{\dfrac{\pi}{8}, -\dfrac{3\pi}{8}\right\} & & & {\color{#3D99F6}\text{Finding all solutions for }-\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}} \end{array}


Results

There are 3 intersection points: abscissa 1 = π 4 , ordinate 1 = 1 2 abscissa 2 = π 8 , ordinate 2 = 2 + 2 2 abscissa 3 = 3 π 8 , ordinate 3 = 2 2 2 \begin{array}{rl} \text{abscissa}_1 = \dfrac{\pi}{4},&\, \text{ordinate}_1 = \dfrac{1}{\sqrt{2}}\\ \text{abscissa}_2 = \dfrac{\pi}{8},&\, \text{ordinate}_2 = \dfrac{\sqrt{2 + \sqrt{2}}}{2}\\ \text{abscissa}_3 = \dfrac{-3\pi}{8},&\, \text{ordinate}_3 = \dfrac{\sqrt{2 - \sqrt{2}}}{2} \end{array} so this satisfies Statement A \boxed{\text{Statement A}} .

Because there are two positive abscissae and one negative, Statement B does not hold.

Since ( ordinate 2 ) 2 + ( ordinate 3 ) 2 = 1 \left(\text{ordinate}_2\right)^2 + \left(\text{ordinate}_3\right)^2 = 1 the set of solutions also satisfies Statement C \boxed{\text{Statement C}} .

Clearly, since the sum of abscissas is 0 0 , Statement D \boxed{\text{Statement D}} holds.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...