Let the points of intersection of the line 4 x − 3 y − 1 0 = 0 and the circle x 2 + y 2 − 2 x + 4 y − 2 0 = 0 be ( a 1 , a 2 ) and ( a 3 , a 4 ) .
Find 5 + ⌊ 5 ∑ i = 1 4 a i ⌋ .
Notation: ⌊ ⋅ ⌋ denotes the floor function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I am better than kushagra juneja, Understand u, I am in class 10 and solved this problem in 2 min, so just give me cheers We get x=3y+10/4(hahah) Then a eq in y =y^2+4y-12=0 So answer =5+-0.4=5-1=4 Understand all u idiots
Why the... anger/language/excitement?
Y = 4 X / 3 − 1 0 / 3 . s u b s t i t u t i n g i n ( X − 1 ) 2 + ( X + 2 ) 2 = 2 5 , 9 ∗ ( X − 1 ) 2 + 1 6 ( X − 1 ) 2 = 2 5 ∗ 9 . ∴ ( X − 1 ) 2 = 9 , . . . a n d . . X = − 2 , 4 . Y = − 6 , 2 . . ( a 1 , . . . a 4 ) = ( − 2 , − 6 , 4 , 2 ) . S o 5 + ⌊ 5 ( − 2 ) + ( − 6 ) + 4 + 2 ⌋ = 5 − 1 = 4 .
Problem Loading...
Note Loading...
Set Loading...
The circle equation can be simplified to ( x − 1 ) 2 + ( y + 2 ) 2 = 5 2 , which describes a circle with center ( 1 , − 2 ) and radius 5 . Now as ( 1 , − 2 ) lies on the line 4 x − 3 y − 1 0 = 0 , this line will intersect the circle at opposite ends of a diameter, so ( 1 , − 2 ) will be the midpoint of ( a 1 , a 2 ) and ( a 3 , a 4 ) . Thus
( 2 a 1 + a 3 , 2 a 2 + a 4 ) = ( 1 , − 2 ) ⟹ a 1 + a 3 = 2 , a 2 + a 4 = − 4 ⟹ a 1 + a 2 + a 3 + a 4 = − 2 .
The given expression then evaluates to 5 + ⌊ 5 − 2 ⌋ = 5 + ( − 1 ) = 4 .