IIT JEE 1983 Maths - MCQ Question 1

Calculus Level 3

0 π / 2 cot x cot x + tan x d x = ? \large \int_0^{\pi/2}\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} \, dx = \, ?


In case you are preparing for IIT JEE, you may want to try IIT JEE 1983 Mathematics Archives .
π / 4 \pi/4 π / 2 \pi/2 π \pi None of the others

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 28, 2016

Relevant wiki: Integration Tricks

Easier solution after getting an idea from Nivedit Jain

I = 0 π 2 cot x cot x + tan x d x Dividing the integrand up and down by cot = 0 π 2 1 1 + tan x d x Using identity: a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 1 1 + tan x + 1 1 + cot x d x = 1 2 0 π 2 1 1 + tan x + tan x tan x + 1 d x = 1 2 0 π 2 1 + tan x 1 + tan x d x = 1 2 x 0 π 2 = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} dx & \small \color{#3D99F6} \text{Dividing the integrand up and down by} \sqrt{\cot} \\ & = \int_0^\frac \pi 2 \frac 1{1+\tan x} dx & \small \color{#3D99F6} \text{Using identity: }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac 1{1+\tan x} + \frac 1{1+\cot x} dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac 1{1+\tan x} + \frac {\tan x}{\tan x+1} dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac {1+\tan x}{1+\tan x} dx \\ & = \frac 12 x \bigg|_0^\frac \pi 2 = \boxed{\dfrac \pi 4} \end{aligned}


Previous solution

I = 0 π 2 cot x cot x + tan x d x Using identity: a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 cot x cot x + tan x + cot ( π 2 x ) cot ( π 2 x ) + tan ( π 2 x ) d x = 1 2 0 π 2 cot x cot x + tan x + tan x tan x + cot x = 1 2 0 π 2 1 d x = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} dx & \small \color{#3D99F6} \text{Using identity: }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac {\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} + \frac {\sqrt{\cot \left(\frac \pi 2 - x \right)}}{\sqrt{\cot \left(\frac \pi 2 - x \right)}+\sqrt{\tan \left(\frac \pi 2 - x \right)}} dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac {\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} + \frac {\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}} \\ & = \frac 12 \int_0^\frac \pi 2 1 \ dx \\ & = \boxed{\dfrac \pi 4} \end{aligned}

nice one but i have a better way see my solution. But learnt a lot of new things from your solutions as always thanks keep posting solutions and help all of us

Nivedit Jain - 4 years, 2 months ago

Log in to reply

Thanks, you give me an idea. I am changing it to a better solution.

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

sir try this one out https://brilliant.org/problems/waves-new-style/

Nivedit Jain - 4 years, 2 months ago
Nivedit Jain
Mar 26, 2017

@Nivedit Jain how did you replace ( (1-tan(x) (1+(tan(x)) with Sec^2(x) ????

Sälmän Rähmän - 3 years, 10 months ago

Log in to reply

sorry my mistake

Nivedit Jain - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...