IIT JEE 1983 Maths - MCQ Question 15

What is the coefficient of x 4 x^4 in the expansion of ( x 2 3 x 2 ) 10 \left(\dfrac{x}{2}-\dfrac{3}{x^2}\right)^{10} ?


In case you are preparing for IIT JEE, you may want to try IIT JEE 1983 Mathematics Archives .
None of the others 450 263 \frac{450}{263} 504 209 \frac{504}{209} 405 256 \frac{405}{256}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( x 2 3 x 2 ) 10 = x 10 2 10 ( 1 6 x 3 ) 10 = x 10 2 10 n = 0 10 ( 1 ) n ( 10 n ) ( 6 x 3 ) n We get x 4 when n = 2 = + x 10 2 10 ( 1 ) 2 ( 10 2 ) ( 6 x 3 ) 2 + = + 1 2 10 1 10 9 1 2 36 x 4 + = + 405 256 x 4 + \begin{aligned} \left(\frac x2-\frac 3{x^2}\right)^{10} & = \frac {x^{10}}{2^{10}} {\color{#3D99F6}\left(1-\frac 6{x^3}\right)^{10}} \\ & = \frac {x^{10}}{2^{10}} {\color{#3D99F6} \sum_{n=0}^{10} (-1)^n {10 \choose n} \left(\frac 6{x^3}\right)^n} & \small \color{#3D99F6} \text{We get }x^4 \text{ when }n=2 \\ & = \cdots + \frac {x^{10}}{2^{10}} (-1)^{\color{#3D99F6}2} {10 \choose {\color{#3D99F6}2}} \left(\frac 6{x^3}\right)^{\color{#3D99F6}2} + \cdots \\ & = \cdots + \frac 1{2^{10}} \cdot 1 \cdot \frac {10\cdot 9}{1 \cdot 2} \cdot 36 x^4 + \cdots \\ & = \cdots + \boxed{\dfrac {405}{256}} x^4 + \cdots \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...