IIT JEE 1983 Maths - MCQ Question 16

Calculus Level 3

If G ( x ) = 25 x 2 , G(x)=-\sqrt{25-x^2}, then evaluate lim x 1 G ( x ) G ( 1 ) x 1 . \lim_{x\to1}\frac{G(x)-G(1)}{x-1} .


In case you are preparing for IIT JEE, you may want to try IIT JEE 1983 Mathematics Archives .
1 5 \frac15 24 -\sqrt{24} 1 24 \frac1{24} None of the others

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Reynan Henry
Jan 2, 2017

lim x 1 24 25 x 2 x 1 = lim x 1 24 25 x 2 x 1 24 + 25 x 2 24 + 25 x 2 = lim x 1 x 2 1 x 1 1 24 + 25 x 2 = lim x 1 x + 1 24 + 25 x 2 = 1 24 \lim_{x\to 1} \frac{\sqrt{24}-\sqrt{25-x^2}}{x-1}=\lim_{x\to 1} \frac{\sqrt{24}-\sqrt{25-x^2}}{x-1}\cdot \frac{\sqrt{24}+\sqrt{25-x^2}}{\sqrt{24}+\sqrt{25-x^2}}=\lim_{x\to 1} \frac{x^2-1}{x-1}\cdot \frac{1}{\sqrt{24}+\sqrt{25-x^2}}=\lim_{x\to 1} \frac{x+1}{\sqrt{24}+\sqrt{25-x^2}}=\frac{1}{\sqrt{24}}

L = lim x 1 G ( x ) G ( 1 ) x 1 Given that G ( x ) = 25 x 2 = lim x 1 25 x 2 + 25 1 x 1 A 0/0 cases, L’H o ˆ pital’s rule applies. = lim x 1 2 x 2 25 x 2 1 Differentiate up and down w.r.t. x = 1 24 \begin{aligned} L & = \lim_{x \to 1} \frac {G(x)-G(1)}{x-1} & \small \color{#3D99F6} \text{Given that } G(x) = - \sqrt{25-x^2} \\ & = \lim_{x \to 1} \frac {- \sqrt{25-x^2} + \sqrt{25-1}}{x-1} & \small \color{#3D99F6} \text{A 0/0 cases, L'Hôpital's rule applies.} \\ & = \lim_{x \to 1} \frac {-\frac {-2x}{2\sqrt{25-x^2}}}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \frac 1{\sqrt{24}} \end{aligned}

Therefore, the answer is None of the others \boxed{\text{None of the others}} .

Daniel Xiang
Feb 12, 2018

By the definition of derivatives

G ( a ) = lim x a G ( x ) G ( a ) x a \displaystyle G'(a)=\lim_{x\rightarrow a}\frac{G(x)-G(a)}{x-a}

obtaining the derivative G ( x ) = x 25 x 2 \displaystyle G'(x) = \frac{x}{\sqrt{25 - x^2}}

Thus, lim x 1 G ( x ) G ( 1 ) x 1 = G ( 1 ) = 1 24 \displaystyle \lim_{x\rightarrow 1}\frac{G(x)-G(1)}{x-1} = G'(1) = \frac{1}{\sqrt{24}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...