IIT JEE Problem

Calculus Level 4

T h e v a l u e o f 0 1 x 4 ( 1 x ) 4 1 + x 2 d x i s : The\quad value\quad of\quad \int _{ 0 }^{ 1 }{ \frac { { x }^{ 4 }{ (1-x) }^{ 4 } }{ 1+{ x }^{ 2 } } } dx\quad is:

22 7 π \frac { 22 }{ 7 } -\pi -1 0 71 15 3 2 π \frac { 71 }{ 15 } -\frac { 3 }{ 2 } \pi 2 105 . \frac { 2 }{ 105 } . 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 12, 2016

The above integrand can be expanded and simplified into:

[ x 4 ( 1 x ) 4 ] / ( 1 + x 2 ) = x 4 ( 1 4 x + 6 x 2 4 x 3 + x 4 ) / ( 1 + x 2 ) [x^4 * (1-x)^4]/(1 + x^2) = x^4 * (1 - 4x + 6x^2 - 4x^3 + x^4) / (1 + x^2) ;

or ( x 4 4 x 5 + 6 x 6 4 x 7 + x 8 ) / ( 1 + x 2 ) (x^4 - 4x^5 + 6x^6 - 4x^7 + x^8) / (1 + x^2) ;

or ( x 6 4 x 5 + 5 x 4 4 x 2 + 4 ) 4 / ( 1 + x 2 ) (x^6 - 4x^5 + 5x^4 - 4x^2 + 4) - 4/(1 + x^2) (i).

Integrating (i) with respect to x gives: 0 1 x 6 4 x 5 + 5 x 4 4 x 2 + 4 4 / ( 1 + x 2 ) d x \int_0^1 x^6 - 4x^5 + 5x^4 - 4x^2 + 4 - 4/(1 + x^2) \, dx ;

or ( 1 / 7 ) x 7 ( 2 / 3 ) x 6 + x 5 ( 4 / 3 ) x 3 + 4 x 4 a r c t a n ( x ) (1/7)*x^7 - (2/3)*x^6 + x^5 - (4/3)*x^3 + 4x - 4*arctan(x) (ii)

which plugging in the limits of integration produces:

[ 1 / 7 2 / 3 + 1 4 / 3 + 4 4 a r c t a n ( 1 ) ] [ 0 4 a r c t a n ( 0 ) ] [1/7 - 2/3 + 1 -4/3 + 4 - 4*arctan(1)] - [0 - 4*arctan(0)] ;

or ( 1 / 7 + 5 2 ) 4 π / 4 (1/7 + 5 - 2) - 4*\pi/4 ;

or 22 / 7 π 22/7 - \pi .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...