IIT-JEE problem

Level 2

The integral sec 2 x ( sec x + tan x ) 9 / 2 d x \int \frac{\sec^2x}{(\sec x+\tan x)^{9/2}}dx equals (for some arbitrary constant K K )?

1 ( sec x + tan x ) 11 / 2 { 1 11 1 7 ( sec x + tan x ) 2 } + K -\frac{1}{(\sec x+\tan x)^{11/2}}\left \{\frac{1}{11}-\frac{1}{7}(\sec x+\tan x)^2\right \}+K 1 ( sec x + tan x ) 11 / 2 { 1 11 1 7 ( sec x + tan x ) 2 } + K \frac{1}{(\sec x+\tan x)^{11/2}}\left \{\frac{1}{11}-\frac{1}{7}(\sec x+\tan x)^2\right \}+K 1 ( sec x + tan x ) 11 / 2 { 1 11 + 1 7 ( sec x + tan x ) 2 } + K - \frac{1}{(\sec x+\tan x)^{11/2}}\left \{\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^2 \right \}+K 1 ( sec x + tan x ) 11 / 2 { 1 11 + 1 7 ( sec x + tan x ) 2 } + K \frac{1}{(\sec x+\tan x)^{11/2}}\left \{\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^2\right \}+K

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anish Puthuraya
Feb 4, 2014

Put sec x + tan x = t \displaystyle \sec x + \tan x = t

( sec x tan x + sec 2 x ) d x = d t \Rightarrow\displaystyle (\sec x\tan x + \sec^2x)dx=dt

sec x d x = d t t \Rightarrow\displaystyle \sec x dx = \frac{dt}{t}

Also, note that,
sec x tan x = 1 t \displaystyle \sec x-\tan x = \frac{1}{t}

sec x = 1 2 ( t + 1 t ) \Rightarrow\displaystyle \sec x = \frac{1}{2}(t+\frac{1}{t})

Hence, the integral simplifies to,

I = sec x sec x d x ( sec x + tan x ) 9 2 = 1 2 ( t + 1 t ) d t t t 9 2 \displaystyle I = \int \frac{\sec x\sec x dx}{(\sec x+\tan x)^{\frac{9}{2}}} = \int \frac{\frac{1}{2}(t+\frac{1}{t})\frac{dt}{t}}{t^{\frac{9}{2}}}

This integral is rather simple to evaluate, and it evaluates to,

I = 1 2 ( 2 7 t 7 2 + 2 11 t 11 2 ) + K \displaystyle I = \frac{-1}{2}(\frac{2}{7t^{\frac{7}{2}}}+\frac{2}{11t^{\frac{11}{2}}})+K

Back substituting the value of t = sec x + tan x \displaystyle t = \sec x +\tan x ,

I = 1 ( sec x + tan x ) 11 2 ( 1 11 + 1 7 ( sec x + tan x ) 2 ) + K \displaystyle I = -\frac{1}{(\sec x+\tan x)^{\frac{11}{2}}}(\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^2)+K

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...