IITJEE Mains (Offline) 2016

Geometry Level 3

Consider f ( x ) = tan 1 ( 1 + sin x 1 sin x ) , x f(x)=\tan^{-1}\left(\sqrt{\dfrac{1+\sin x}{1-\sin x}}\right),x belongs to ( 0 , π 2 ) \left(0,\dfrac{\pi}{2}\right) . A normal to y = f ( x ) y=f(x) at x = π 6 x=\dfrac{\pi}{6} also passes through the point __________ \text{\_\_\_\_\_\_\_\_\_\_} .

( π 6 , 0 ) (\frac{\pi}{6},0) ( 0 , 0 ) (0,0) ( 0 , 2 π 3 ) (0,\frac{2\pi}{3}) ( π 4 , 0 ) (\frac{\pi}{4},0)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Apr 5, 2016

An easy problem

sin x = cos ( π 2 x ) \sin x = \cos \left( \frac{\pi}{2}-x \right)

and using 1 + cos 2 x = 2 cos 2 x a n d 1 cos 2 x = 2 sin 2 x \large{1+ \cos 2x=2 \cos^2 x~~and ~~ 1-\cos 2x=2 \sin^2 x}

we get f ( x ) = tan 1 ( cot ( π 4 x 2 ) ) \large{f(x)=\tan^{-1} \left( \cot \left( \frac{\pi}{4}-\frac{x}{2} \right) \right)}

f ( x ) = x 2 + π 4 \Rightarrow f(x)=\frac{x}{2}+\frac{\pi}{4}

equation of normal to this line (line perpendicular to it).

y = 2 x + c y=-2x+c . This line passes through ( π 6 , π 3 ) \large{\left(\frac{\pi}{6},\frac{\pi}{3}\right)}

y = 2 x + 2 π 3 \large{\Rightarrow y=-2x+\frac{2 \pi }{3}}

can u provide easier expalnation tanishq. how can we say that line passes through (pi/6 ,pi/3)

rishabh dubey - 5 years, 2 months ago

Log in to reply

put the value of x x in f ( x ) f(x) to find y y .

Tanishq Varshney - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...