IITJEE problem

Geometry Level 4

Let 1 p 1 -1 \leq p \leq 1 , find the sum of all the roots of 4 x 3 3 x p = 0 4x^3-3x-p=0 lying in the interval [ 1 2 , 1 ] [\frac{1}{2},1] .

None of the given. cos ( 1 3 cos 1 p ) \cos\left( \frac{1}{3} \cos^{-1} p \right) cos ( 4 3 cos 1 p ) \cos\left( \frac{4}{3} \cos^{-1} p \right) cos ( 3 c o s 1 p ) \cos\left( 3 cos^{-1} p \right) π 2 cos ( 3 cos 1 p ) \frac{\pi}{2}-\cos\left( 3 \cos^{-1} p \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 13, 2015

Let x = cos θ x = \cos{\theta} ; then we have:

4 x 3 3 x p = 0 4 cos 3 θ 3 cos θ = p cos 3 θ = p 3 θ = cos 1 p x = cos θ = cos ( 1 3 cos 1 p ) \begin{aligned} 4x^3-3x-p & = 0 \\ \Rightarrow 4\cos^3{\theta} - 3\cos{\theta} & = p \\ \cos{3\theta} & = p \\ 3\theta & = \cos^{-1}{p} \\ \Rightarrow x & = \cos{\theta} = \cos {\left( \frac{1}{3} \cos^{-1}{p} \right)} \end{aligned}

As p [ 1 , 1 ] 3 θ [ 0 , π ] θ [ 0 , π 3 ] x = cos θ [ 1 2 , 1 ] \space p \in [-1,1]\quad \Rightarrow 3 \theta \in [0,\pi] \quad \Rightarrow \theta \in [0,\frac{\pi}{3}] \quad \Rightarrow x = \cos{\theta} \in [\frac{1}{2},1] , there is only one root lies in the interval [ 1 2 , 1 ] [\frac{1}{2},1] .

Therefore, the sum of roots in this interval is the single root cos ( 1 3 cos 1 p ) \boxed{\cos {\left( \dfrac{1}{3} \cos^{-1}{p} \right)} } .

Moderator note:

Great approach with the trigonometric substitution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...