Illegal LOG-ing

Algebra Level 3

x log 10 x = 1 0 2 3 log 10 x + 2 ( log 10 x ) 2 \large x^{\log_{10} x} = 10^{2-3\log_{10}x +2(\log_{10}x)^{2}}

Find the sum of all the solutions to the equation above.

111 10 100 110

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 19, 2018

x log 10 x = 1 0 2 3 log 10 x + 2 log 10 2 x Taking log 10 on both sides log 10 2 x = 2 3 log 10 x + 2 log 10 2 x \begin{aligned} x^{\log_{10} x} & = 10^{2-3\log_{10} x + 2\log^2_{10}x} & \small \color{#3D99F6} \text{Taking }\log_{10} \text{ on both sides} \\ \log^2_{10} x & = 2-3\log_{10} x + 2\log^2_{10}x \end{aligned}

log 10 2 x 3 log 10 x + 2 log 10 2 x + 2 = 0 ( log 10 x 1 ) ( log 10 x 2 ) = 0 \begin{aligned} \implies \log^2_{10} x -3\log_{10} x + 2\log^2_{10}x + 2 & = 0 \\ \left(\log_{10} x - 1\right) \left(\log_{10} x - 2\right) & = 0 \end{aligned}

{ log 10 x = 1 x = 10 log 10 x = 2 x = 100 \implies \begin{cases} \log_{10} x = 1 & \implies x = 10 \\ \log_{10} x = 2 & \implies x = 100 \end{cases}

Therefore, the sum of solutions is 10 + 100 = 110 10+100 = \boxed{110} .

Can you edit your LaTeX(The 5th line)?

X X - 2 years, 8 months ago

Log in to reply

Done. Thanks.

Chew-Seong Cheong - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...