I'm a bit greater than you

Calculus Level 2

Ryan has the following indeterminate form of limit lim x 0 ( 1 + tan x 3 1 + sin x 3 x 3 ) \lim_{x\to 0}\left(\dfrac{\sqrt[3]{1+\tan x} -\sqrt[3] {1+\sin x}}{x^3} \right) Ryan was told that whenever, x 0 x\to 0 then sin x , tan x x \sin x , \tan x\approx x . Based on this technique, the limit calculated by Ryan is found to be lim x 0 ( 1 + x 3 1 + x 3 x 3 ) = 0 × 1 x 3 = 0 \lim_{x\to 0}\left(\dfrac{\sqrt[3]{1+ x } -\sqrt[3] {1+ x }}{x^3} \right) = 0\times \dfrac{1}{x^3} =0 Is the limit evaluated by Ryan correct?


Inspired by Tommy Li.

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Oct 17, 2018

Note that 1 + tan x 3 0 \sqrt[3]{1+\tan x} \to 0 slower than 1 + sin x 3 0 \sqrt[3]{1+\sin x} \to 0 and both much slower than x 3 0 x^3 \to 0 , therefore, the method does not work.

L = lim x 0 1 + tan x 3 1 + sin x 3 x 3 = lim x 0 ( 1 + tan x 3 1 + sin x 3 ) ( ( 1 + tan x 3 ) 2 + 1 + tan x 3 1 + sin x 3 + ( 1 + sin x 3 ) 2 ) x 3 ( ( 1 + tan x 3 ) 2 + 1 + tan x 3 1 + sin x 3 + ( 1 + sin x 3 ) 2 ) = lim x 0 1 + tan x 1 sin x x 3 lim x 0 1 ( 1 + tan x 3 ) 2 + 1 + tan x 3 1 + sin x 3 + ( 1 + sin x 3 ) 2 \begin{aligned} L & = \lim_{x \to 0} \frac {\sqrt[3]{1+\tan x}- \sqrt[3]{1+\sin x}}{x^3} \\ & = \lim_{x \to 0} \frac {\left(\sqrt[3]{1+\tan x}- \sqrt[3]{1+\sin x}\right) \color{#3D99F6} \left((\sqrt[3]{1+\tan x})^2 +\sqrt[3]{1+\tan x}\cdot \sqrt[3]{1+\sin x} + (\sqrt[3]{1+\sin x})^2\right)}{x^3\color{#3D99F6} \left((\sqrt[3]{1+\tan x})^2 +\sqrt[3]{1+\tan x}\cdot \sqrt[3]{1+\sin x} + (\sqrt[3]{1+\sin x})^2\right)} \\ & = \lim_{x \to 0} \frac {1+\tan x - 1-\sin x}{x^3} \cdot \lim_{x \to 0} \frac 1{(\sqrt[3]{1+\tan x})^2 +\sqrt[3]{1+\tan x}\cdot \sqrt[3]{1+\sin x} + (\sqrt[3]{1+\sin x})^2} \end{aligned}

= lim x 0 tan x sin x x 3 1 1 + 1 + 1 By Maclaurin series = 1 3 lim x 0 x + x 3 3 + O 1 ( x 5 ) x + x 3 3 ! O 2 ( x 5 ) x 3 = 1 3 lim x 0 x 3 3 + O 1 ( x 5 ) + x 3 3 ! O 2 ( x 5 ) x 3 Divide up and down by x 3 = 1 3 lim x 0 1 3 + O 1 ( x 2 ) + 1 6 O 2 ( x 2 ) 1 = 1 6 \begin{aligned} \ \ \ & = \lim_{x \to 0} \frac {\color{#3D99F6}\tan x - \sin x}{x^3} \cdot \frac 1{1+1+1} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \frac 13 \lim_{x \to 0} \frac {\color{#3D99F6}x + \frac {x^3}3 + O_1(x^5) - x + \frac {x^3}{3!}-O_2(x^5)}{x^3} \\ & = \frac 13 \lim_{x \to 0} \frac {\frac {x^3}3 + O_1(x^5) + \frac {x^3}{3!}-O_2(x^5)}{x^3} & \small \color{#3D99F6} \text{Divide up and down by }x^3 \\ & = \frac 13 \lim_{x \to 0} \frac {\frac 13 + O_1(x^2) + \frac 16-O_2(x^2)}1 \\ & = \frac 16 \end{aligned}

No , the limit is not 0.

Brian Moehring
Oct 16, 2018

Those types of approximations only work if you know that higher-power terms don't contribute anything to the limit, and as a general rule, this often fails when when you're adding/subtracting terms you've approximated. This is why Ryan is incorrect.


We should instead write 1 + tan x 3 1 + sin x 3 x 3 = tan x x × 1 cos x x 2 × 1 ( 1 + tan x 3 ) 2 + ( 1 + tan x 3 ) ( 1 + sin x 3 ) + ( 1 + sin x 3 ) 2 \frac{\sqrt[3]{1+\tan x} - \sqrt[3]{1+\sin x}}{x^3} = \frac{\tan x}{x} \times \frac{1 - \cos x}{x^2} \times \frac{1}{\left(\sqrt[3]{1+\tan x}\right)^2 + \left(\sqrt[3]{1+\tan x}\right)\left(\sqrt[3]{1+\sin x}\right) + \left(\sqrt[3]{1+\sin x}\right)^2}

so that taking the limit as x 0 x \to 0 gives 1 × 1 2 × 1 1 2 + ( 1 ) ( 1 ) + 1 2 = 1 6 1 \times \frac{1}{2} \times \frac{1}{1^2 + (1)(1) + 1^2} = \frac{1}{6}

Garv Khurana
Oct 21, 2018

I looked at the title of the problem.

ThatBadGuy Mára
Oct 22, 2018

50/50 odds.

shamefully walks away

Aaryan Vaishya
Oct 18, 2018

No work needed.Just notice that the 1/x^3 term would be indeterminate and the limit has still been evaluated incorrectly.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...