I'm back problem (Double Euler's?)

Algebra Level 5

ln ( k ) = exp [ ln ( 3 ) + i sin 1 ( 24 25 ) ] \large \ln(k) = \exp\left[ -\ln(3) + i \sin^{-1} \left( \frac{24}{25} \right) \right]

Suppose we define k k such that the equation above is fulfilled, and if the imaginary part of k k can be expressed in the form of e A B sin ( C D ) \large e^{\frac AB} \sin\left( \frac CD\right)

where A , B , C A,B,C and D D are positive integers such that gcd ( A , B ) = gcd ( C , D ) = 1 \gcd(A,B) = \gcd(C,D) = 1 , find the value of A + B + C + D A+B+C+D .

Details and Assumptions

We define exp ( x ) \exp (x) as e x e^x .


The answer is 115.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jake Lai
Nov 1, 2015

We begin by dealing with the RHS of the equation given, with the aid of Euler's identity e i θ = cos θ + i sin θ e^{i\theta} = \cos \theta + i\sin \theta .

exp ( ln 3 + i sin 1 24 25 ) = e ln 3 e i sin 1 24 25 = 1 3 ( cos sin 1 24 25 + i sin sin 1 24 25 ) \exp(-\ln 3+i\sin^{-1} \frac{24}{25}) = e^{-\ln 3}e^{i\sin^{-1} \frac{24}{25}} = \frac{1}{3}\left( \cos \sin^{-1} \frac{24}{25} + i\sin \sin^{-1} \frac{24}{25} \right)

Now, employing that c o s θ = 1 sin 2 θ cos \theta = \sqrt{1-\sin^2 \theta} ,

1 3 ( cos sin 1 24 25 + i sin sin 1 24 25 ) = 1 3 ( 1 ( 24 25 ) 2 + i ( 24 25 ) ) = 7 75 + 8 i 25 \frac{1}{3}\left( \cos \sin^{-1} \frac{24}{25} + i\sin \sin^{-1} \frac{24}{25} \right) = \frac{1}{3}\left(\sqrt{1-(\frac{24}{25})^2} + i(\frac{24}{25}) \right) = \frac{7}{75}+\frac{8i}{25}

Equating this with the LHS of the equation given, we have ln k = 7 75 + 8 i 25 \ln k = \frac{7}{75}+\frac{8i}{25} and so k = exp ( 7 75 + 8 i 25 ) k = \exp(\frac{7}{75}+\frac{8i}{25}) . We then simplify the obtained expression for k k , using Euler's identity once more.

exp ( 7 75 + 8 i 25 ) = e 7 / 75 ( e 8 i / 25 ) = e 7 / 75 ( cos 8 25 + i sin 8 25 ) \exp(\frac{7}{75}+\frac{8i}{25}) = e^{7/75}(e^{8i/25}) = e^{7/75}(\cos \frac{8}{25} + i\sin \frac{8}{25})

The imaginary part of k k is hence simply

( k ) = e 7 / 75 sin 8 25 \Im(k) = \boxed{e^{7/75}\sin \frac{8}{25}}

so we have A = 7 , B = 75 , C = 8 A = 7, B = 75, C = 8 and D = 25 D = 25 , giving A + B + C + D = 115 A+B+C+D = \boxed{115} .

Challenge:

Prove that, if e A sin α = e B sin β e^A\sin \alpha = e^B\sin \beta for A , B , α , β Q A,B,\alpha,\beta \in \mathbb{Q} , then A = B A = B and α = β \alpha = \beta .

Jake Lai - 5 years, 7 months ago

oh man i got 181 as i kept 24/75 as it is :(

hiroto kun - 4 years, 3 months ago

ln ( k ) = exp [ ln ( 3 ) + i sin 1 ( 24 25 ) ] = exp [ i sin 1 ( 24 25 ) ] 3 = 7 25 + i 24 25 3 = 7 75 + i 8 25 \ln(k) = \exp\left[ -\ln(3) + i \sin^{-1} \left( \frac{24}{25} \right) \right]=\frac{\exp\left[i \sin^{-1} \left( \frac{24}{25} \right) \right]}{3}=\frac{\frac{7}{25}+i \frac{24}{25}}{3}=\frac{7}{75}+i\frac{8}{25}

k = exp [ 7 75 + i 8 25 ] = e 7 75 e i 8 25 = e 7 75 [ cos 8 25 + i sin 8 25 ] k=\exp[\frac{7}{75}+i\frac{8}{25}]=e^{\frac{7}{75}}e^{i\frac{8}{25}}=e^{\frac{7}{75}}[\cos{\frac{8}{25}}+i\sin{\frac{8}{25}}]

( k ) = e 7 75 sin 8 25 \Im(k)=e^{\frac{7}{75}}\sin{\frac{8}{25}}

Please don't write proofs/solutions in equations only!

Jake Lai - 5 years, 7 months ago

Log in to reply

I believe this solution doesn't require any explanation!

Miloje Đukanović - 5 years, 7 months ago

Log in to reply

It's still bad proof-writing not to include prose, even it seems like it doesn't need any explanation. It's important to lay our your motivations and steps so that the techniques can be exploited in other analogous problems, especially in more advanced mathematics.

Jake Lai - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...