I'm back! With a nice integral for you

Calculus Level 2

0 π 4 ln ( 1 + tan x ) d x = ? \int_0^{\frac{\pi}{4}}\ln(1+\tan x)\text{ }dx = \ ?

None of These Answers π ln 2 8 \dfrac{\pi\ln2}{8} π 2 8 \dfrac{\pi\sqrt{2}}{8} π ln 2 4 \dfrac{\pi\ln2}{4} π ( ln 2 + 2 ) 32 \dfrac{\pi(\ln2+\sqrt{2})}{32}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

Trevor B.
Jan 29, 2015

There are a couple ways to do this (manipulating with sum to product formulas was one way a friend used) but this is my preferred method.

I = 0 π 4 ln ( 1 + tan x ) d x I=\displaystyle\int_0^\frac{\pi}{4}\ln(1+\tan x)\text{ }dx

We can use the special case of the identity a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle\int_a^b f(x)\text{ }dx=\int_a^b f(a+b-x)\text{ }dx saying that 0 k f ( x ) d x = 0 k f ( k x ) d x . \displaystyle\int_0^kf(x)\text{ }dx=\displaystyle\int_0^kf(k-x)\text{ }dx.

f 0 π 4 ln ( 1 + tan x ) d x = 0 π 4 ln ( 1 + tan ( π 4 x ) ) d x = 0 π 4 ln ( 1 + tan π 4 tan x 1 + tan π 4 tan x ) d x = 0 π 4 ln ( 1 + 1 tan x 1 + tan x ) d x = 0 π 4 ln ( 1 + tan x 1 + tan x + 1 tan x 1 + tan x ) d x = 0 π 4 ln ( 2 1 + tan x ) d x = 0 π 4 ln 2 ln ( 1 + tan x ) d x = 0 π 4 ln 2 d x 0 π 4 ln ( 1 + tan x ) d x = π ln 2 4 I \begin{array}{c}f\int_0^\frac{\pi}{4}\ln(1+\tan x)\text{ }dx&=\int_0^\frac{\pi}{4}\ln\left(1+\tan\left(\dfrac{\pi}{4}-x\right)\right)\text{ }dx\\ &=\int_0^\frac{\pi}{4}\ln\left(1+\dfrac{\tan\frac{\pi}{4}-\tan x}{1+\tan\frac{\pi}{4}\tan x}\right)\text{ }dx\\ &=\int_0^\frac{\pi}{4}\ln\left(1+\dfrac{1-\tan x}{1+\tan x}\right)\text{ }dx\\ &=\int_0^\frac{\pi}{4}\ln\left(\dfrac{1+\tan x}{1+\tan x}+\dfrac{1-\tan x}{1+\tan x}\right)\text{ }dx\\ &=\int_0^\frac{\pi}{4}\ln\left(\dfrac{2}{1+\tan x}\right)\text{ }dx\\ &=\int_0^\frac{\pi}{4}\ln2-\ln(1+\tan x)\text{ }dx\\ &=\int_0^\frac{\pi}{4}\ln2\text{ }dx-\int_0^\frac{\pi}{4}\ln(1+\tan x)\text{ }dx\\ &=\dfrac{\pi\ln2}{4}-I \end{array}

Bringing the I I to the left side, we find that 2 I = π ln 2 4 I = π ln 2 8 2I=\dfrac{\pi\ln2}{4}\Rightarrow I=\boxed{\dfrac{\pi\ln2}{8}}

Harikiran Cherala
Jan 29, 2015

I = ∫(0,π/4)ln(1 + tanx)dx

I = ∫(0,π/4)ln(1+tan(π/4-x)) dx

= ln(1+(tanπ/4-tanx)/(1+tanπ/4tanx))

= ln (1+(1-tanx)/(1+tanx))

= ln(2/(1+tanx))

On adding, 2I = ∫(0,π/4)ln2 dx

2I =ln2 ∫(0,π/4)dx

I = ((ln2)/2) [x](0,π/4)

I = (πln2)/8

Vighnesh Raut
Jan 29, 2015

I = 0 π 4 ln ( 1 + t a n x ) d x ( A p p l y i n g a b f ( x ) d x = a b f ( a + b x ) d x ) I = 0 π 4 l n ( 1 + t a n ( π 4 x ) ) d x = 0 π 4 l n ( 1 + 1 t a n x 1 + t a n x ) d x = 0 π 4 l n ( 1 + t a n x 1 + t a n x + 1 t a n x 1 + t a n x ) d x I=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \ln { (1+tanx)dx\quad \quad (Applying\quad \int _{ a }^{ b }{ f(x)dx=\int _{ a }^{ b }{ f(a+b-x)dx) } } } } \\ I=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ ln(1+tan(\frac { \pi }{ 4 } -x } ))dx\\ =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ ln(1+\frac { 1-tanx }{ 1+tanx } } )dx\\ =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ ln(\frac { 1+tanx }{ 1+tanx } +\frac { 1-tanx }{ 1+tanx } } )dx

I = 0 π 4 l n ( 2 1 + t a n x ) d x = 0 π 4 l n 2 l n ( 1 + t a n x ) d x = 0 π 4 l n 2 d x 0 π 4 l n ( 1 + t a n x ) d x = l n 2 [ π 4 ] I 2 I = π 4 l n 2 I = π 8 l n 2 I=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ ln(\frac { 2 }{ 1+tanx } } )dx\\ =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ ln2\quad -\quad ln(1+tanx)\quad dx } \\ =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ ln2\quad dx\quad -\quad \int _{ 0 }^{ \frac { \pi }{ 4 } }{ ln(1+tanx)dx } } \\ =ln2\left[ \frac { \pi }{ 4 } \right] \quad -\quad I\\ 2I=\frac { \pi }{ 4 } ln2\\ I=\frac { \pi }{ 8 } ln2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...