I'm bored (Part 2)

Calculus Level 5

The integral 1 5 d x x 4 + 4 x 3 + 9 x 2 + 10 x \int _{ 1}^{ 5 } { \frac { dx }{ x^4 + 4x^3 + 9x^2 + 10x } } can be expressed as α β π γ δ arctan ε + ζ η ln θ ι \frac { \alpha }{ \beta } \pi -\frac { \gamma }\delta { \arctan { \varepsilon } }+\frac { \zeta }{ \eta } \ln { \frac { \theta }{ \iota } } where α \alpha , β \beta , γ \gamma , δ \delta , ε \varepsilon , ζ \zeta , η \eta , θ \theta , and ι \iota are all positive integers. Also g c d ( α , β ) = g c d ( γ , δ ) = g c d ( ζ , η ) = g c d ( θ , ι ) = 1 gcd(\alpha, \beta) = gcd(\gamma, \delta) = gcd(\zeta, \eta) = gcd(\theta, \iota) = 1 .

Find α + β + γ + δ + ε + ζ + η + θ + ι \alpha +\beta +\gamma +\delta +\varepsilon +\zeta +\eta +\theta +\iota


The answer is 88.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Jun 3, 2018

The above integrand decomposes into:

1 x 4 + 4 x 3 + 9 x 2 + 10 x = 1 10 x 1 10 ( x + 2 ) 1 5 ( x 2 + 2 x + 5 ) \frac{1}{x^4 + 4x^3 + 9x^2 + 10x} = \frac{1}{10x} - \frac{1}{10(x+2)} - \frac{1}{5(x^2 + 2x + 5)} ;

which upon integration gives:

1 5 1 10 x 1 10 ( x + 2 ) 1 5 ( x 2 + 2 x + 5 ) d x = 1 5 1 10 x 1 10 ( x + 2 ) 1 5 ( ( x + 1 ) 2 + 2 2 ) d x \int_{1}^{5} \frac{1}{10x} - \frac{1}{10(x+2)} - \frac{1}{5(x^2 + 2x + 5)} dx = \int_{1}^{5} \frac{1}{10x} - \frac{1}{10(x+2)} - \frac{1}{5((x + 1)^{2} + 2^{2})} dx ;

or 1 10 l n ( x x + 2 ) 1 10 a r c t a n ( x + 1 2 ) 1 5 = 1 10 [ l n ( 5 7 ) l n ( 1 3 ) ] 1 10 [ a r c t a n ( 3 ) a r c t a n ( 1 ) ] = 1 10 l n ( 15 7 ) 1 10 a r c t a n ( 3 ) + π 40 . \frac{1}{10} \cdot ln(\frac{x}{x+2}) - \frac{1}{10} \cdot arctan(\frac{x+1}{2})|_{1}^{5} = \frac{1}{10}[ln(\frac{5}{7}) - ln(\frac{1}{3})] - \frac{1}{10}[arctan(3) - arctan(1)] = \boxed{\frac{1}{10} \cdot ln(\frac{15}{7}) - \frac{1}{10} \cdot arctan(3) + \frac{\pi}{40}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...