I'm confused about the title #RMM (2)

Calculus Level 5

f ( x ) = 1 x 2 + ( 2 a + 1 ) x + a 2 + a f(x) = \dfrac{1}{x^2+(2a+1)x+a^2+a} Let a > 0 a>0 and f : ( , a 1 ) ( a , + ) R ; f: (-\infty, - a-1)\cup(-a,+\infty)\to \mathbb R; . Find lim n lim p k = 1 p f ( n ) ( k ) n 2 \lim_{n\to \infty} \sqrt[n^2]{\left|\lim_{p\to \infty} \sum_{k=1}^{p} f^{(n)}(k)\right|}


This is the problem proposed by Prof. Maria Ursarescu- Romania .

For more problems you may wish to visit RMM .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Oct 18, 2018

My approach

For a > 0 a>0 , defined f ( x ) = 1 ( x 2 + 2 x a + a 2 ) + ( x + a ) = 1 ( x + a ) 2 + ( x + a ) = 1 ( x + a + 1 ) ( x + a ) = 1 x + a 1 x + a + 1 \begin{aligned} f(x) & = \dfrac{1}{\,(x^2+2xa +a^2 )+\,(x+a) }=\dfrac{1}{\,(x+a)^2+\,(x+a)} \\& = \dfrac{1}{\,(x+a+1)(x+a)}= \dfrac{1}{x+a}-\dfrac{1}{x+a+1}\end{aligned} Thus f n ( x ) = d d x ( d d x ( d d x ( d d x ( 1 x + a 1 x + a + 1 ) ) ) ) n times = ( 1 ) n n ! ( x + a ) n + 1 ( 1 ) n n ! ( x + a + 1 ) n + 1 = ( 1 ) n n ! [ 1 ( x + a ) n + 1 1 ( x + a + 1 ) n + 1 ] \begin{aligned} f^{n}(x) & =\underbrace{\dfrac{d}{dx}\left(\cdots \dfrac{d}{dx}\left(\dfrac{d}{dx}\left(\dfrac{d}{dx}\left(\dfrac{1}{x+a} -\dfrac{1}{x+a +1}\right)\right)\right)\cdots \right)}_{\text{n times}}\\& = \dfrac{(-1)^n n!}{\,(x+a)^{n+1}}-\dfrac{(-1)^n n!}{\,(x+a+1)^{n+1} }=(-1)^n n!\left[\dfrac{1}{(x+a)^{n+1}}-\dfrac{1}{(x+a+1)^{n+1}}\right]\end{aligned} replacing x x by k k and thus ( lim p k = 1 p f n ( k ) > 0 ) 1 n 2 = lim p ( k = 1 p [ n ! ( k + a ) n + 1 n ! ( k + a + 1 ) n + 1 ] ) 1 n 2 \left(\left| \lim_{p\to \infty} \sum_{k=1}^{p}f^{n} (k) \right|_{> 0}\right)^{\frac{1}{n^2}}=\lim_{p\to \infty} \left(\sum_{k=1}^{p} \left[\dfrac{n!}{(k+a)^{n+1}}-\dfrac{n!}{(k+a+1)^{n+1}}\right]\right)^{\frac{1}{n^2}} Since the partial sum of k = 1 p [ n ! ( k + a ) n + 1 n ! ( k + a + 1 ) n + 1 ] = n ! ( a + 1 ) n + 1 n ! ( p + a + 1 ) n + 1 \sum_{k=1}^{p}\left[\dfrac{n!}{(k+a)^{n+1}}-\dfrac{n!}{(k+a+1)^{n+1}}\right]= \dfrac{n!}{(a+1)^{n+1}}-\dfrac{n!}{(p+a+1)^{n+1}} As p p\to \infty and hence the lim p k = 1 p [ n ! ( k + a ) n + 1 n ! ( k + a + 1 ) n + 1 ] = n ! ( a + 1 ) n + 1 0 \lim_{p\to \infty} \sum_{k=1}^{p}\left[\dfrac{n!}{(k+a)^{n+1}}-\dfrac{n!}{(k+a+1)^{n+1}}\right] =\dfrac{n!}{(a+1)^{n+1}}-0 Finally we obtain that L = ( lim n n ! ( a + 1 ) n + 1 ) 1 n 2 ( lim n 2 π n ( a + 1 ) n + 1 ( n e ) n ) 1 n 2 = lim n ( 2 π ) 1 2 n 2 n 1 + 2 n n 2 e n n 2 ( a + 1 ) n + 1 n 2 = lim n exp ( ( 1 + 2 n ) log n n 2 ) = e 0 = 1 \begin{aligned} L& = \left(\lim_{n\to \infty} \dfrac{ n!}{(a+1)^{n+1}}\right)^{\frac{1}{n^2}}\sim \left(\lim_{n\to \infty} \dfrac{\sqrt{2\pi n}\ }{(a+1)^{n+1}}\left(\dfrac{n}{e}\right)^n \right)^{\frac{1}{n^2}} \\& = \lim_{n\to \infty} \dfrac{\,(2\pi)^{\frac{1}{2n^2}}\cdot n^{\frac{1+2n}{n^2}}}{e^{\frac{n}{n^2}}\,(a+1)^{\frac{n+1}{n^2}}}= \lim_{n\to \infty} \exp\left(\dfrac{(1+2n)\log n}{n^2}\right)=e^0 =1 \end{aligned}

Chew-Seong Cheong
Oct 18, 2018

Relevant wiki: Stirling's Formula

f ( x ) = 1 x 2 + ( 2 a + 1 ) x + a 2 + a = 1 x 2 + 2 a x + a 2 + x + a = 1 ( x + a ) 2 + x + a = 1 ( x + a ) ( x + a + 1 ) = 1 x + a 1 x + a + 1 \begin{aligned} f(x) & = \frac 1{x^2+(2a+1)x+a^2+a} = \frac 1{x^2 + 2ax+a^2 + x + a} = \frac 1{(x+a)^2 + x + a} = \frac 1{(x+a)(x+a+1)} = \frac 1{x+a} - \frac 1{x+a+1} \end{aligned}

f ( n ) ( x ) = ( 1 ) n n ! ( 1 ( x + a ) n + 1 1 ( x + a + 1 ) n + 1 ) k = 1 f ( n ) ( k ) = k = 1 ( 1 ) n n ! ( 1 ( k + a ) n + 1 1 ( k + a + 1 ) n + 1 ) = ( 1 ) n n ! ( 1 + a ) n + 1 \begin{aligned} \implies f^{(n)} (x) & = (-1)^n n! \left(\frac 1{(x+a)^{n+1}} - \frac 1{(x+a+1)^{n+1}} \right) \\ \sum_{k=1}^\infty f^{(n)}(k) & = \sum_{k=1}^\infty (-1)^n n! \left(\frac 1{(k+a)^{n+1}} - \frac 1{(k+a+1)^{n+1}} \right) = \frac {(-1)^n n!}{(1+a)^{n+1}} \end{aligned}

Therefore,

L = lim n k = 1 f ( n ) ( k ) n 2 = lim n ( n ! ( 1 + a ) n + 1 ) 1 n 2 By Stirling’s formula = lim n ( 2 π n n n e n ( 1 + a ) n + 1 ) 1 n 2 = lim n ( 2 π ) 1 2 n 2 n 1 n + 1 2 n 2 e 1 n ( 1 + a ) 1 n + 1 n 2 = 1 \begin{aligned} L & = \lim_{n \to \infty} \sqrt[n^2]{\left|\sum_{k=1}^\infty f^{(n)}(k) \right|} = \lim_{n \to \infty} \left(\frac {\color{#3D99F6}n!}{(1+a)^{n+1}}\right)^{\frac 1{n^2}} & \small \color{#3D99F6} \text{By Stirling's formula} \\ & = \lim_{n \to \infty} \left(\frac {\color{#3D99F6}\sqrt{2\pi n}n^ne^{-n}}{(1+a)^{n+1}}\right)^{\frac 1{n^2}} = \lim_{n \to \infty} \frac {(2\pi)^{\frac 1{2n^2}}n^{\frac 1n+\frac 1{2n^2}}}{e^\frac 1n(1+a)^{\frac 1n+\frac 1{n^2}}} \\ & = \boxed 1 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...