f ( x ) = x 2 + ( 2 a + 1 ) x + a 2 + a 1 Let a > 0 and f : ( − ∞ , − a − 1 ) ∪ ( − a , + ∞ ) → R ; . Find n → ∞ lim n 2 ∣ ∣ ∣ ∣ ∣ p → ∞ lim k = 1 ∑ p f ( n ) ( k ) ∣ ∣ ∣ ∣ ∣
This is the problem proposed by Prof. Maria Ursarescu- Romania .
For more problems you may wish to visit RMM .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Stirling's Formula
f ( x ) = x 2 + ( 2 a + 1 ) x + a 2 + a 1 = x 2 + 2 a x + a 2 + x + a 1 = ( x + a ) 2 + x + a 1 = ( x + a ) ( x + a + 1 ) 1 = x + a 1 − x + a + 1 1
⟹ f ( n ) ( x ) k = 1 ∑ ∞ f ( n ) ( k ) = ( − 1 ) n n ! ( ( x + a ) n + 1 1 − ( x + a + 1 ) n + 1 1 ) = k = 1 ∑ ∞ ( − 1 ) n n ! ( ( k + a ) n + 1 1 − ( k + a + 1 ) n + 1 1 ) = ( 1 + a ) n + 1 ( − 1 ) n n !
Therefore,
L = n → ∞ lim n 2 ∣ ∣ ∣ ∣ ∣ k = 1 ∑ ∞ f ( n ) ( k ) ∣ ∣ ∣ ∣ ∣ = n → ∞ lim ( ( 1 + a ) n + 1 n ! ) n 2 1 = n → ∞ lim ( ( 1 + a ) n + 1 2 π n n n e − n ) n 2 1 = n → ∞ lim e n 1 ( 1 + a ) n 1 + n 2 1 ( 2 π ) 2 n 2 1 n n 1 + 2 n 2 1 = 1 By Stirling’s formula
Problem Loading...
Note Loading...
Set Loading...
My approach
For a > 0 , defined f ( x ) = ( x 2 + 2 x a + a 2 ) + ( x + a ) 1 = ( x + a ) 2 + ( x + a ) 1 = ( x + a + 1 ) ( x + a ) 1 = x + a 1 − x + a + 1 1 Thus f n ( x ) = n times d x d ( ⋯ d x d ( d x d ( d x d ( x + a 1 − x + a + 1 1 ) ) ) ⋯ ) = ( x + a ) n + 1 ( − 1 ) n n ! − ( x + a + 1 ) n + 1 ( − 1 ) n n ! = ( − 1 ) n n ! [ ( x + a ) n + 1 1 − ( x + a + 1 ) n + 1 1 ] replacing x by k and thus ( ∣ ∣ ∣ ∣ ∣ p → ∞ lim k = 1 ∑ p f n ( k ) ∣ ∣ ∣ ∣ ∣ > 0 ) n 2 1 = p → ∞ lim ( k = 1 ∑ p [ ( k + a ) n + 1 n ! − ( k + a + 1 ) n + 1 n ! ] ) n 2 1 Since the partial sum of k = 1 ∑ p [ ( k + a ) n + 1 n ! − ( k + a + 1 ) n + 1 n ! ] = ( a + 1 ) n + 1 n ! − ( p + a + 1 ) n + 1 n ! As p → ∞ and hence the p → ∞ lim k = 1 ∑ p [ ( k + a ) n + 1 n ! − ( k + a + 1 ) n + 1 n ! ] = ( a + 1 ) n + 1 n ! − 0 Finally we obtain that L = ( n → ∞ lim ( a + 1 ) n + 1 n ! ) n 2 1 ∼ ( n → ∞ lim ( a + 1 ) n + 1 2 π n ( e n ) n ) n 2 1 = n → ∞ lim e n 2 n ( a + 1 ) n 2 n + 1 ( 2 π ) 2 n 2 1 ⋅ n n 2 1 + 2 n = n → ∞ lim exp ( n 2 ( 1 + 2 n ) lo g n ) = e 0 = 1