I'm getting the vibe of a progression here.

Calculus Level 5

Let f f be a real valued function satisfying

f ( x 1 ) + f ( x + 1 ) 2 f ( x ) = ( e i π / 3 ) \dfrac{f(x-1) + f(x+1)}{2 f(x)} = \Im \left( e^{{i \pi}/{3}} \right)

Given that f ( 5 ) = α f(5) = \alpha , then what is k = 0 α 1 f ( 5 + 12 k ) = ? \displaystyle \sum_{k=0}^{\alpha - 1} f (5+12k) = ?

Notation: ( z ) \Im (z) denotes the imaginary part of the complex number z z .

α ( α 1 ) \alpha ( \alpha -1) α 2 \alpha^2 α \alpha 2 α 2 \alpha

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( x 1 ) + f ( x + 1 ) 2 f ( x ) = ( e i π 3 ) = 3 2 ( Given ) f ( x 1 ) + f ( x + 1 ) = 3 f ( x ) ( 1 ) f ( x ) + f ( x + 2 ) = 3 f ( x + 1 ) ( 2 ) f ( x + 1 ) + f ( x + 3 ) = 3 f ( x + 2 ) ( 3 ) Adding ( 1 ) and ( 3 ) we get, f ( x 1 ) + 2 f ( x + 1 ) + f ( x + 3 ) = 3 ( f ( x ) + f ( x + 2 ) ) = 3 ( 3 f ( x + 1 ) ) From ( 2 ) f ( x 1 ) + 2 f ( x + 1 ) + f ( x + 3 ) = 3 f ( x + 1 ) f ( x 1 ) + f ( x + 3 ) = f ( x + 1 ) ( 4 ) f ( x + 1 ) + f ( x + 5 ) = f ( x + 3 ) ( 5 ) changing x to x+2 Adding ( 4 ) and ( 5 ) we get, f ( x 1 ) + f ( x + 5 ) = 0 f ( x ) + f ( x + 6 ) = 0 ( 6 ) changing x to x+1 Similarly, f ( x + 6 ) + f ( x + 12 ) = 0 ( 7 ) Subtracting ( 7 ) from ( 6 ) we get, f ( x ) f ( x + 12 ) = 0 f ( x ) = f ( x + 12 ) f ( x + 12 k ) = f ( x ) f(x) is periodic with period 12 k = 0 α 1 f ( 5 + 12 k ) = k = 0 α 1 f ( 5 ) = f ( 5 ) k = 0 α 1 1 = α f ( 5 ) = α 2 \begin{aligned} \dfrac{f(x-1)+f(x+1)}{2f(x)}&=\Im \left(e^{\tfrac{i\pi}{3}}\right)=\dfrac{\sqrt{3}}{2}\hspace{4mm}\color{#3D99F6}\small(\text{Given}) \\\\ f(x-1)+f(x+1)&=\sqrt{3}\cdot f(x)\hspace{4mm}\color{#3D99F6}\small(1)\\ f(x)+f(x+2)&=\sqrt{3}\cdot f(x+1)\hspace{4mm}\color{#3D99F6}\small(2)\\ f(x+1)+f(x+3)&=\sqrt{3}\cdot f(x+2)\hspace{4mm}\color{#3D99F6}\small(3)\\\\ \text{Adding }\color{#3D99F6}(1) \color{#333333}\text{ and }\color{#3D99F6}(3) \color{#333333}\text{ we get,}\\\\ f(x-1)+2f(x+1)+f(x+3)&=\sqrt{3}\cdot\left(f(x)+f(x+2)\right)\\\\ &=\sqrt{3}\cdot(\sqrt{3}\cdot f(x+1))\hspace{4mm}\color{#3D99F6}\small\text{From }(2)\\\\ \implies f(x-1)+2f(x+1)+f(x+3)&=3\cdot f(x+1)\\\\ f(x-1)+f(x+3)&=f(x+1)\hspace{4mm}\color{#3D99F6}\small(4)\\ f(x+1)+f(x+5)&=f(x+3)\hspace{4mm}\color{#3D99F6}\small(5) \hspace{4mm}\text{changing x to x+2}\\\\ \text{Adding }\color{#3D99F6}(4) \color{#333333}\text{ and }\color{#3D99F6}(5) \color{#333333}\text{ we get,}\\\\ f(x-1)+f(x+5)&=0\\ f(x)+f(x+6)&=0\hspace{4mm}\color{#3D99F6}\small(6)\hspace{4mm}\text{changing x to x+1}\\ \text{Similarly,}f(x+6)+f(x+12)&=0\hspace{4mm}\color{#3D99F6}\small(7)\\\\ \text{Subtracting }\color{#3D99F6}(7) \color{#333333}\text{ from }\color{#3D99F6}(6) \color{#333333}\text{ we get,}\\\\ f(x)-f(x+12)&=0\\\\ \implies f(x)&=f(x+12)\\\\ \implies f(x+12k)&=f(x)\hspace{4mm}\color{#3D99F6}\small\text{f(x) is periodic with period 12}\\\\ \implies \sum_{k=0}^{\alpha-1}f(5+12k)&= \sum_{k=0}^{\alpha-1}f(5)\\ &=f(5)\sum_{k=0}^{\alpha-1}1\\ &=\alpha\cdot f(5)\\ &=\color{#EC7300}\boxed{\color{#333333}{\alpha}^2}\end{aligned}

Beautiful solution!

Tapas Mazumdar - 4 years, 1 month ago

Log in to reply

thank you :)

Anirudh Sreekumar - 4 years, 1 month ago

Nice, I got stuck halfway.

Peter van der Linden - 4 years, 1 month ago

JEE trick : Seeing the options and iff question is meant to be answered then period of f(x) is 12 .

Thus answer : ( α ) 2 \alpha)^{2}

Note: This senseful nonsense logic can destroy your question.

Aakash Khandelwal - 4 years, 1 month ago

Log in to reply

Haha. Even I had this intuition at the first look on this problem. I just had to convince myself that I was right and then dang! I was right. :P

Tapas Mazumdar - 4 years, 1 month ago

See this

Sumanth R Hegde - 4 years, 1 month ago

Log in to reply

Thank you for this! :)

Tapas Mazumdar - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...