I'm invoking the Fractional-Part Function!

{ q } 2 = { n ! 2000 } \large{ \{q\}^2 = \left \{ \dfrac{n!}{2000} \right \} }

How many pairs ( n , q ) (n,q) satisfy the above equation, where n n is a positive integer and q q is a non-integer rational number such that 0 < q < 2000 0<q<2000 ?

Notation : { r } \{r\} denotes the fractional part function .


The answer is 4000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Nov 16, 2015

since we are given q is non integer, we easily deduce n ! 2000 \dfrac{n!}{2000} is non integer. but for n≥ 15 it will always be an int. hence,we have to check the 1 ->14. what is fractional part, it is just n ! ( m o d 2000 ) 2000 \dfrac{n!\pmod{2000}}{2000} we search for mod by multiplying to the las number 11 ! 1 1 ( m o d 2000 ) 2 ! 1 2 2 ( m o d 2000 ) 3 ! 2 3 6 ( m o d 2000 ) 4 ! 6 4 24 ( m o d 2000 ) 5 ! 24 5 120 ( m o d 2000 ) 6 ! 120 6 720 ( m o d 2000 ) 7 ! 720 7 40 ( m o d 2000 ) 8 ! 40 8 320 ( m o d 2000 ) 9 ! 320 9 880 ( m o d 2000 ) 10 ! 880 10 800 ( m o d 2000 ) 11 ! 800 11 800 ( m o d 2000 ) 12 ! 800 12 1600 ( m o d 2000 ) 13 ! 1600 13 800 ( m o d 2000 ) 14 ! 800 14 1200 ( m o d 2000 ) \begin{array}{c}11!&&\equiv&&1&&\equiv&& 1&&\pmod{2000}\\ 2!&&\equiv&& 1*2&&\equiv&& 2 &&\pmod{2000}\\ 3!&&\equiv&& 2*3&&\equiv &&6 &&\pmod{2000}\\ 4!&&\equiv&& 6*4&&\equiv&& 24&& \pmod{2000}\\ 5!&&\equiv&& 24*5&&\equiv&& 120&& \pmod{2000}\\ 6!&&\equiv&& 120*6 &&\equiv&& 720&& \pmod{2000}\\ 7!&&\equiv&& 720*7&&\equiv&& 40 &&\pmod{2000}\\ 8!&&\equiv&& 40*8&&\equiv&& 320 &&\pmod{2000}\\ 9!&&\equiv&& 320*9 &&\equiv&& 880 &&\pmod{2000}\\ 10!&&\equiv&& 880*10&&\equiv&& 800&& \pmod{2000}\\ 11!&&\equiv&& 800*11&&\equiv&&800 &&\pmod{2000}\\ 12!&&\equiv&& 800*12&&\equiv&& 1600 &&\pmod{2000}\\ 13!&&\equiv&& 1600*13&&\equiv&& 800&& \pmod{2000}\\ 14!&&\equiv&& 800*14&&\equiv&& 1200&& \pmod{2000}\\ \end{array} we see that q must be rational ,so must its fractional part for which n ! ( m o d 2000 ) 2000 \sqrt{\dfrac{n!\pmod{2000}}{2000}} must be rational. we see that only 6 and 8 satisfies this each producing 2000 q, hence we have 2 2000 = 4000 2*2000=\boxed{4000} solutions. namely ( 6 , 0.6 ) , ( 6 , 1.6 ) . . . . ( 6 , 1999.6 ) a n d ( 8 , 0.4 ) , ( 8 , 1.4 ) . . . . . ( 8 , 1999.4 ) (6,0.6),(6,1.6)....(6,1999.6)\quad and\quad(8,0.4),(8,1.4).....(8,1999.4)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...