I'm loving it!

Calculus Level 4

1 2 3 3 ! 1 3 2 4 4 ! + 1 3 5 2 5 5 ! = ? \dfrac{1}{2^{3}3!}-\dfrac{1\cdot3}{2^{4}4!}+\dfrac{1\cdot3\cdot5}{2^{5}5!}-\cdots= \, ? \

Give your answer to 5 decimal places.


The answer is 0.01552.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 11, 2018

Let S S be the given expression. Consider the binomial expansion below.

( 1 + x ) 3 2 = 1 + 3 x 2 1 1 ! + 3 x 2 2 2 2 ! 3 x 3 2 3 3 ! + 3 3 x 4 2 4 4 ! 3 3 5 x 5 2 5 5 ! + = 1 + 3 x 2 1 1 ! + 3 x 2 2 2 2 ! 3 ( x 3 2 3 3 ! 1 3 x 4 2 4 4 ! + 1 3 5 x 5 2 5 5 ! + ) Putting x = 1 2 3 2 = 1 + 3 2 1 1 ! + 3 2 2 2 ! 3 ( 1 2 3 3 ! 1 3 2 4 4 ! + 1 3 5 2 5 5 ! + ) S = 1 3 ( 1 + 3 2 + 3 8 2 2 ) 0.01552 \begin{aligned} (1+x)^\frac 32 & = 1 + \frac {3x}{2^11!} + \frac {3 x^2}{2^22!} - \frac {3x^3}{2^33!} + \frac {3\cdot 3 x^4}{2^4 4!} - \frac {3\cdot 3 \cdot 5 x^5}{2^5 5!} + \cdots \\ & = 1 + \frac {3x}{2^11!} + \frac {3 x^2}{2^22!} - 3\left(\frac {x^3}{2^33!} - \frac {1\cdot 3 x^4}{2^4 4!} + \frac {1\cdot 3 \cdot 5 x^5}{2^5 5!} + \cdots \right) & \small \color{#3D99F6} \text{Putting }x = 1 \\ 2^\frac 32 & = 1 + \frac {3}{2^11!} + \frac {3}{2^22!} - 3\left(\frac {1}{2^33!} - \frac {1\cdot 3}{2^4 4!} + \frac {1\cdot 3 \cdot 5}{2^5 5!} + \cdots \right) \\ \implies S & = \frac 13 \left(1 + \frac 32 + \frac 38 - 2 \sqrt 2\right) \approx \boxed{0.01552} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...