I'm not doing Newton's sum all the way!

Algebra Level 5

{ a 1 + a 2 + + a 9 = 1 a 1 2 + a 2 2 + + a 9 2 = 2 a 1 3 + a 2 3 + + a 9 3 = 3 a 1 9 + a 2 9 + + a 9 9 = 9 \begin{cases} a_1 + a_2 + \cdots +a_9 = 1 \\ a_1^2 + a_2^2 + \cdots +a_9 ^2= 2 \\ a_1^3 + a_2^3 + \cdots +a_9 ^3= 3 \\ \qquad \vdots \\ a_1^9 + a_2^9 + \cdots +a_9 ^9 = 9 \end{cases}

Let N N be the unique 9-tuple of complex numbers ( a 1 , a 2 , , a 9 ) (a_1,a_2,\ldots , a_9) that satisfies the system of equations above.

What is the smallest positive value of k k such that k × ( a 1 10 + a 2 10 + + a 9 10 ) k \times (a_1^{10} + a_2^{10} + \cdots +a_9 ^{10}) is an integer?


The answer is 362880.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
May 20, 2016

Nope, I insist on doing Newton's sums all the way.

Let:

S 1 = a 1 + a 2 + + a 9 S 2 = a 1 a 2 + a 1 a 3 + + a 8 a 9 S 3 = a 1 a 2 a 3 + a 1 a 2 a 4 + + a 7 a 8 a 9 S 4 = a 1 a 2 a 3 a 4 + a 1 a 2 a 3 a 5 + + a 6 a 7 a 8 a 9 S 5 = a 1 a 2 a 3 a 4 a 5 + a 1 a 2 a 3 a 4 a 6 + + a 5 a 6 a 7 a 8 a 9 S 6 = a 1 a 2 a 3 a 4 a 5 a 6 + a 1 a 2 a 3 a 4 a 5 a 7 + + a 4 a 5 a 6 a 7 a 8 a 9 S 7 = a 1 a 2 a 3 a 4 a 5 a 6 a 7 + a 1 a 2 a 3 a 4 a 5 a 6 a 8 + + a 3 a 4 a 5 a 6 a 7 a 8 a 9 S 8 = a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 + a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 9 + + a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 S 9 = a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 S_1 = a_1 + a_2 + \ldots + a_9\\ S_2 = a_1a_2 + a_1a_3 + \ldots + a_8a_9\\ S_3 = a_1a_2a_3 + a_1a_2a_4 + \ldots + a_7a_8a_9\\ S_4 = a_1a_2a_3a_4 + a_1a_2a_3a_5 + \ldots + a_6a_7a_8a_9\\ S_5 = a_1a_2a_3a_4a_5 + a_1a_2a_3a_4a_6 + \ldots + a_5a_6a_7a_8a_9\\ S_6 = a_1a_2a_3a_4a_5a_6 + a_1a_2a_3a_4a_5a_7 + \ldots + a_4a_5a_6a_7a_8a_9\\ S_7 = a_1a_2a_3a_4a_5a_6a_7 + a_1a_2a_3a_4a_5a_6a_8 + \ldots + a_3a_4a_5a_6a_7a_8a_9\\ S_8 = a_1a_2a_3a_4a_5a_6a_7a_8 + a_1a_2a_3a_4a_5a_6a_7a_9 + \ldots + a_2a_3a_4a_5a_6a_7a_8a_9\\ S_9 = a_1a_2a_3a_4a_5a_6a_7a_8a_9

Also, let

P 1 = a 1 + a 2 + + a 9 P 2 = a 1 2 + a 2 2 + + a 9 2 P 3 = a 1 3 + a 2 3 + + a 9 3 P 9 = a 1 9 + a 2 9 + + a 9 9 P 10 = a 1 10 + a 2 10 + + a 9 10 P_1 = a_1 + a_2 + \ldots + a_9\\ P_2 = a_1^2 + a_2^2 + \ldots + a_9^2\\ P_3 = a_1^3 + a_2^3 + \ldots + a_9^3\\ \vdots\\ P_9 = a_1^9 + a_2^9 + \ldots + a_9^9\\ P_{10} = a_1^{10} + a_2^{10} + \ldots + a_9^{10}

We know that:

P 1 = S 1 P 2 = S 1 P 1 2 S 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 4 S 4 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 S 4 P 1 + 5 S 5 P 6 = S 1 P 5 S 2 P 4 + S 3 P 3 S 4 P 2 + S 5 P 1 6 S 6 P 7 = S 1 P 6 S 2 P 5 + S 3 P 4 S 4 P 3 + S 5 P 2 S 6 P 1 + 7 S 7 P 8 = S 1 P 7 S 2 P 6 + S 3 P 5 S 4 P 4 + S 5 P 3 S 6 P 2 + S 7 P 1 8 S 8 P 9 = S 1 P 8 S 2 P 7 + S 3 P 6 S 4 P 5 + S 5 P 4 S 6 P 3 + S 7 P 2 S 8 P 1 + 9 S 9 P 10 = S 1 P 9 S 2 P 8 + S 3 P 7 S 4 P 6 + S 5 P 5 S 6 P 4 + S 7 P 3 S 8 P 2 + S 9 P 1 P_1 = S_1\\ P_2 = S_1P_1 - 2S_2\\ P_3 = S_1P_2 - S_2P_1 + 3S_3\\ P_4 = S_1P_3 - S_2P_2 + S_3P_1 - 4S_4\\ P_5 =S_1P_4 - S_2P_3 + S_3P_2 - S_4P_1 + 5S_5\\ P_6 =S_1P_5 - S_2P_4 + S_3P_3 - S_4P_2 + S_5P_1 - 6S_6\\ P_7 =S_1P_6 - S_2P_5 + S_3P_4 - S_4P_3 + S_5P_2 -S_6P_1 + 7S_7\\ P_8 = S_1P_7 - S_2P_6 + S_3P_5 - S_4P_4 + S_5P_3 -S_6P_2 + S_7P_1 - 8S_8\\ P_9 = S_1P_8 - S_2P_7 + S_3P_6 - S_4P_5 + S_5P_4 -S_6P_3 + S_7P_2 - S_8P_1 + 9S_9\\ P_{10} = S_1P_9 - S_2P_8 + S_3P_7 - S_4P_6 + S_5P_5 -S_6P_4 + S_7P_3 - S_8P_2 + S_9P_1

Substitute the values one by one:

{ 1 = S 1 S 1 = 1 2 = 1 ( 1 ) 2 S 2 S 2 = 1 2 3 = 1 ( 2 ) + 1 2 ( 1 ) + 3 S 3 S 3 = 1 6 4 = 1 ( 3 ) + 1 2 ( 2 ) + 1 6 ( 1 ) 4 S 4 S 4 = 1 24 5 = 1 ( 4 ) + 1 2 ( 3 ) + 1 6 ( 2 ) 1 24 ( 1 ) + 5 S 5 S 5 = 19 120 6 = 1 ( 5 ) + 1 2 ( 4 ) + 1 6 ( 3 ) 1 24 ( 2 ) 19 120 ( 1 ) 6 S 6 S 6 = 151 720 7 = 1 ( 6 ) + 1 2 ( 5 ) + 1 6 ( 4 ) 1 24 ( 3 ) 19 120 ( 2 ) 151 720 ( 1 ) + 7 S 7 S 7 = 1091 5040 8 = 1 ( 7 ) + 1 2 ( 6 ) + 1 6 ( 5 ) 1 24 ( 4 ) 19 120 ( 3 ) 151 720 ( 2 ) 1091 5040 ( 1 ) 8 S 8 S 8 = 7841 40320 9 = 1 ( 8 ) + 1 2 ( 7 ) + 1 6 ( 6 ) 1 24 ( 5 ) 19 120 ( 4 ) 151 720 ( 3 ) 1091 5040 ( 2 ) 7841 40320 ( 1 ) + 9 S 9 S 9 = 56519 362880 P 10 = 1 ( 9 ) + 1 2 ( 8 ) + 1 6 ( 7 ) 1 24 ( 6 ) 19 120 ( 5 ) 151 720 ( 4 ) 1091 5040 ( 3 ) 7841 40320 ( 2 ) 56519 362880 ( 1 ) = 4025071 362880 \begin{cases}1 = S_1 & S_1=1\\ 2 = 1(1) - 2S_2 & S_2=-\dfrac{1}{2}\\ 3 = 1(2) +\dfrac{1}{2}(1) + 3S_3 & S_3=\dfrac{1}{6}\\ 4 = 1(3) +\dfrac{1}{2}(2) + \dfrac{1}{6}(1) - 4S_4 & S_4=\dfrac{1}{24}\\ 5 = 1(4) +\dfrac{1}{2}(3) + \dfrac{1}{6}(2) - \dfrac{1}{24}(1) + 5S_5 & S_5=-\dfrac{19}{120}\\ 6 = 1(5) +\dfrac{1}{2}(4) + \dfrac{1}{6}(3) - \dfrac{1}{24}(2) -\dfrac{19}{120}(1) - 6S_6 & S_6=\dfrac{151}{720}\\ 7 = 1(6) +\dfrac{1}{2}(5) + \dfrac{1}{6}(4) - \dfrac{1}{24}(3) -\dfrac{19}{120}(2) -\dfrac{151}{720}(1) + 7S_7 & S_7=-\dfrac{1091}{5040}\\ 8 = 1(7) +\dfrac{1}{2}(6) + \dfrac{1}{6}(5) - \dfrac{1}{24}(4) -\dfrac{19}{120}(3) -\dfrac{151}{720}(2) -\dfrac{1091}{5040}(1) - 8S_8 & S_8=\dfrac{7841}{40320}\\ 9 = 1(8) +\dfrac{1}{2}(7) + \dfrac{1}{6}(6) - \dfrac{1}{24}(5) -\dfrac{19}{120}(4) -\dfrac{151}{720}(3) -\dfrac{1091}{5040}(2) - \dfrac{7841}{40320}(1) + 9S_9 & S_9=-\dfrac{56519}{362880}\\ P_{10} = 1(9) +\dfrac{1}{2}(8) + \dfrac{1}{6}(7) - \dfrac{1}{24}(6) -\dfrac{19}{120}(5) -\dfrac{151}{720}(4) -\dfrac{1091}{5040}(3) - \dfrac{7841}{40320}(2) -\dfrac{56519}{362880}(1) & =\dfrac{4025071}{362880}\\ \end{cases}

Note: I verified that this value is the correct one in its simplest form with the help of WolframAlpha

Now, we are looking for the smallest possible value of k k such that k P 10 = 4025071 k 362880 kP_{10} = \dfrac{4025071k}{362880} is an integer

Obviously, the answer would be 362880 \boxed{362880}

The truth:

Most of us who solved this question didn't actually computed this value. (I probably was the only person who did this, I actually computed this after I solved the question, just to do Newton's sums all the way and because this is the only way I know how to prove my answer)

What I did was, I computed all the way to S 4 S_4 , and I then realized that P 10 P_{10} probably was:

P 10 = P 1 + P 2 2 ! + P 3 3 ! P 4 4 ! ± a P 5 5 ! ± b P 6 6 ! ± c P 7 7 ! ± d P 8 8 ! ± e P 9 9 ! P_{10} = P_1 + \dfrac{P_2}{2!} + \dfrac{P_3}{3!} - \dfrac{P_4}{4!} \pm \dfrac{aP_5}{5!} \pm \dfrac{bP_6}{6!} \pm \dfrac{cP_7}{7!} \pm \dfrac{dP_8}{8!} \pm \dfrac{eP_9}{9!}

where a , b , c , d , e a,\;b,\;c,\;d,\;e are all constants.

I guessed that P 10 = n 9 ! P_{10} = \dfrac{n}{9!} , where n n and 9 ! 9! are coprime positive integers. Therefore, for k P 10 = k n 9 ! kP_{10} = \dfrac{kn}{9!} to be an integer, the smallest positive value that k k can take is probably 9 ! = 362880 9! = \boxed{362880} . Hopefully, someone else can write a solution which can prove this.

WOAHHHHHHHHHHHHHHHHHHHHHHHHH!!!!!

Pi Han Goh - 5 years ago

You are dead on right. I wrote a small piece of code which reverses any given first N newton's identities to obtain the symmetric coefficients, and all of your values for Si's are correct.

Siva Bathula - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...