Imaginary but real

Algebra Level 4

10000 ( i i ) = ? \huge \lfloor\: 10000\: \cdot \:(i^{i}) \rfloor \: = \: ?

Note: i = 1 i = \sqrt{-1} Important : Of the infinite number of values that i i i^{i} can take, find the one with greatest modulus less than 1."


The answer is 2078.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 5, 2016

i i = e i ln i = e i × i π 2 = e π 2 = 0.20787957635 i^i=e^{i \ln i}=e^{i\times \frac{i\pi}{2}}=e^{\frac{-\pi}{2}}=0.20787957635 (Since i = e i π 2 ln i = i π 2 i=e^{\frac{i\pi}{2}}\implies \ln i=i\frac{\pi}{2} ) 10000 × i i = 2078.8 = 2078 \Large \therefore \lfloor 10000\times i^i\rfloor=\lfloor2078.8\rfloor=\boxed{2078}

Mateus Gomes
Mar 5, 2016

10000 ( i i ) = \huge \lfloor\: 10000\: \cdot \:(i^{i}) \rfloor =

10000 ( ( e i π 2 ) i ) = \huge \lfloor 10000\: \cdot \:((e^\frac{i\pi}{2})^{i}) \rfloor =

10000 ( e π 2 ) = \huge \lfloor 10000\: \cdot \:(e^\frac{-\pi}{2}) \rfloor =

2078 \huge 2078

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...