Imaginary game

Algebra Level 2

i + i 2 + i 3 + i 4 + i 5 + i 6 + i 7 + i 8 + + i 20 = ? \large i+i^2+i^3+i^4+i^5+i^6+i^7+i^8+ \ldots +i^{20} = ?

Notation: i = 1 i = \sqrt{-1} denotes the imaginary unit.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 21, 2017

Note that the value of i k i^k is cyclical with a period of 4. That is

i k = { 1 if k m o d 4 = 0 i if k m o d 4 = 1 1 if k m o d 4 = 2 i if k m o d 4 = 3 i^k = \begin{cases} 1 & \text{if }k \bmod 4 = 0 \\ i & \text{if }k \bmod 4 = 1 \\ -1 & \text{if }k \bmod 4 = 2 \\ -i & \text{if }k \bmod 4 = 3 \end{cases}

As a result, its sum is also cyclical as follows.

k = 1 n i k = { 0 if n m o d 4 = 0 i if n m o d 4 = 1 i 1 if n m o d 4 = 2 1 if k m o d 4 = 3 \displaystyle \sum_{k=1}^n i^k = \begin{cases} 0 & \text{if }n \bmod 4 = 0 \\ i & \text{if }n \bmod 4 = 1 \\ i -1 & \text{if }n \bmod 4 = 2 \\ -1 & \text{if }k \bmod 4 = 3 \end{cases}

Since 20 m o d 4 = 0 20 \bmod 4=0 , k = 1 20 i k = 0 \displaystyle \sum_{k=1}^{20} i^k = \boxed{0} .

Tommy Li
Oct 20, 2017

Note that i 4 n + 1 = i , i 4 n + 2 = 1 , i 4 n + 3 = i , i 4 n = 1 for n = 0 , 1 , 2 , ( i 4 n + 1 + i 4 n + 2 + i 4 n + 3 + i 4 n ) = ( i 1 i + 1 ) = 0 ( i + i 2 + i 3 + i 4 ) + ( i 5 + i 6 + i 7 + i 8 ) + + ( i 17 + i 18 + i 19 + i 20 ) = 0 + 0 + + 0 = 0 i^{4n+1} = i \ , \ i^{4n+2} = -1 \ , \ i^{4n+3} = -i \ , \ i^{4n} = 1 \ \text{for} n= 0,1,2, \cdots \\ (i^{4n+1}+i^{4n+2}+i^{4n+3}+ i^{4n}) = (i-1-i+1) = 0 \\ (i+i^2+i^3+i^4)+(i^5+i^6+i^7+i^8)+ \ldots +(i^{17}+i^{18}+i^{19}+i^{20})= 0+0+ \cdots +0 =0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...