Imaginary number challenge

Algebra Level 4

k = 1 2016 ( ( k i i k ) k × k i k × i 2016 k ) = a b i \large \sum_{k=1}^{2016} \left(\left(\frac{k-i}{i-k}\right)^{k} \times \frac{k}{i^k} \times i^{2016k} \right)= a-bi

If the above equation is true for positive integers a a and b b , find a + b a+b .

Clarification : i = 1 i=\sqrt{-1} .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tommy Li
Jun 20, 2016

( k i i k ) k (\frac{k-i}{i-k})^{k}

= ( ( i k ) i k ) k =(\frac{-(i-k)}{i-k})^{k}

= ( 1 ) k =(-1)^{k}

i 2016 k i^{2016k}

= i 4 n =i^{4n} ,where n n is a positive integer.

= 1 =1

k = 1 2016 ( ( k i i k ) k × k i k × i 2016 k ) \displaystyle\sum_{k=1}^{2016} ((\frac{k-i}{i-k})^{k} \times \frac{k}{i^k} \times i^{2016k} )

= k = 1 2016 ( ( 1 ) k × k i k ) =\displaystyle\sum_{k=1}^{2016} ((-1)^{k} \times \frac{k}{i^k} )

= k = 1 2016 ( ( 1 ) k × k ( i k ) ( ( i ) k ) i k ) =\displaystyle\sum_{k=1}^{2016} ((-1)^{k} \times \frac{k(i^k)((-i)^k)}{i^k} )

= k = 1 2016 ( 1 ) k × k ( i ) k =\displaystyle\sum_{k=1}^{2016} (-1)^{k} \times k(-i)^{k}

= k = 1 2016 k ( ( i ) ( 1 ) ) k =\displaystyle\sum_{k=1}^{2016} k((-i)(-1))^{k}

= k = 1 2016 k ( i ) k =\displaystyle\sum_{k=1}^{2016} k(i)^{k}

= i 2 3 i + 4 + 5 i 6 7 i + 8 + + 2013 i 2014 2015 i + 2016 = i-2-3i+4+5i-6-7i+8 + \dots + 2013i-2014-2015i+2016

= ( i 2 3 i + 4 ) + ( 5 i 6 7 i + 8 ) + + ( 2013 i 2014 2015 i + 2016 ) = (i-2-3i+4)+(5i-6-7i+8) + \dots + (2013i-2014-2015i+2016)

= ( 2 i + 2 ) + ( 2 i + 2 ) + + ( 2 i + 2 ) = (-2i+2)+(-2i+2)+\dots + (-2i+2)

= ( 2016 4 ) ( 2 i + 2 ) = (\frac{2016}{4})(-2i+2)

= 1008 1008 i = 1008-1008i

a + b = 1008 + 1008 = 2016 a+b = 1008+1008 = 2016

Chew-Seong Cheong
Jun 20, 2016

S = k = 1 2016 ( k i i k ) k k i k i 2016 k = k = 1 2016 ( k i k i ) k k i k i 4 × 504 k We note that i 4 = 1 = k = 1 2016 ( 1 ) k k i k ( 1 ) = k = 1 2016 k ( 1 i ) k We note that 1 = i 2 = k = 1 2016 k ( i 2 i ) k = k = 1 2016 k i k = i 2 3 i + 4 + 5 i 6 7 i + 8 + . . . 2015 i + 2016 = ( 2 + 4 6 + 8 10 + 12 . . . + 2016 ) + ( 1 3 + 5 7 + 9 11 + . . . 2015 ) i = ( 2 + 2 + 2 + . . . + 2 ) 2 × 504 + ( 2 2 2 . . . 2 ) 2 × 504 i = 1008 1008 i \begin{aligned} S & = \sum_{k=1}^{2016} \left(\color{#3D99F6}{\frac{k-i}{i-k}}\right)^k \frac k{i^k} \color{#D61F06}{i^{2016k}} \\ & = \sum_{k=1}^{2016} \left(\color{#3D99F6}{-\frac{k-i}{k-i}}\right)^k \frac k{i^k} \color{#D61F06}{i^{4\times 504k}} \quad \quad \small \color{#D61F06}{\text{We note that }i^4 = 1} \\ & = \sum_{k=1}^{2016} \left(\color{#3D99F6}{-1}\right)^k \frac k{i^k} \color{#D61F06}{(1)} \\ & = \sum_{k=1}^{2016} k \left(\frac{\color{#3D99F6}{-1}}i \right)^k \quad \quad \small \color{#3D99F6}{\text{We note that }-1 = i^2} \\ & = \sum_{k=1}^{2016} k \left(\frac{\color{#3D99F6}{i^2}}i \right)^k \\ & = \sum_{k=1}^{2016} k i^k \\ & = i - 2 - 3i + 4 + 5i - 6 - 7i + 8 + ...-2015i + 2016 \\ & = (\color{#3D99F6}{- 2 + 4} \color{#D61F06}{- 6 + 8} - 10+12-...+ 2016) + (\color{#3D99F6}{1-3}+\color{#D61F06}{5-7}+9-11+...-2015)i \\ & = \underbrace{(\color{#3D99F6}{2}+\color{#D61F06}{2}+2+...+2)}_{2\times 504} + \underbrace{(\color{#3D99F6}{-2} \color{#D61F06}{-2} -2-...-2)}_{-2\times 504}i \\ & = 1008 - 1008i \end{aligned}

a + b = 1008 + 1008 = 2016 \implies a + b = 1008+1008 = \boxed{2016}

Thanks you very much ! Your solution is clear and explain those tricky parts very well.

Tommy Li - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...