k = 1 ∑ 2 0 1 6 ⎝ ⎛ ( i − k k − i ) k × i k k × i 2 0 1 6 k ⎠ ⎞ = a − b i
If the above equation is true for positive integers a and b , find a + b .
Clarification : i = − 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = k = 1 ∑ 2 0 1 6 ( i − k k − i ) k i k k i 2 0 1 6 k = k = 1 ∑ 2 0 1 6 ( − k − i k − i ) k i k k i 4 × 5 0 4 k We note that i 4 = 1 = k = 1 ∑ 2 0 1 6 ( − 1 ) k i k k ( 1 ) = k = 1 ∑ 2 0 1 6 k ( i − 1 ) k We note that − 1 = i 2 = k = 1 ∑ 2 0 1 6 k ( i i 2 ) k = k = 1 ∑ 2 0 1 6 k i k = i − 2 − 3 i + 4 + 5 i − 6 − 7 i + 8 + . . . − 2 0 1 5 i + 2 0 1 6 = ( − 2 + 4 − 6 + 8 − 1 0 + 1 2 − . . . + 2 0 1 6 ) + ( 1 − 3 + 5 − 7 + 9 − 1 1 + . . . − 2 0 1 5 ) i = 2 × 5 0 4 ( 2 + 2 + 2 + . . . + 2 ) + − 2 × 5 0 4 ( − 2 − 2 − 2 − . . . − 2 ) i = 1 0 0 8 − 1 0 0 8 i
⟹ a + b = 1 0 0 8 + 1 0 0 8 = 2 0 1 6
Thanks you very much ! Your solution is clear and explain those tricky parts very well.
Problem Loading...
Note Loading...
Set Loading...
( i − k k − i ) k
= ( i − k − ( i − k ) ) k
= ( − 1 ) k
i 2 0 1 6 k
= i 4 n ,where n is a positive integer.
= 1
k = 1 ∑ 2 0 1 6 ( ( i − k k − i ) k × i k k × i 2 0 1 6 k )
= k = 1 ∑ 2 0 1 6 ( ( − 1 ) k × i k k )
= k = 1 ∑ 2 0 1 6 ( ( − 1 ) k × i k k ( i k ) ( ( − i ) k ) )
= k = 1 ∑ 2 0 1 6 ( − 1 ) k × k ( − i ) k
= k = 1 ∑ 2 0 1 6 k ( ( − i ) ( − 1 ) ) k
= k = 1 ∑ 2 0 1 6 k ( i ) k
= i − 2 − 3 i + 4 + 5 i − 6 − 7 i + 8 + ⋯ + 2 0 1 3 i − 2 0 1 4 − 2 0 1 5 i + 2 0 1 6
= ( i − 2 − 3 i + 4 ) + ( 5 i − 6 − 7 i + 8 ) + ⋯ + ( 2 0 1 3 i − 2 0 1 4 − 2 0 1 5 i + 2 0 1 6 )
= ( − 2 i + 2 ) + ( − 2 i + 2 ) + ⋯ + ( − 2 i + 2 )
= ( 4 2 0 1 6 ) ( − 2 i + 2 )
= 1 0 0 8 − 1 0 0 8 i
a + b = 1 0 0 8 + 1 0 0 8 = 2 0 1 6