Imaginary Powerhouse ( i ) (i)

n = 1 2 3 + 4 5 6 7 8 × 9 1 0 1 1 . . . 1 4 15 + 1 6 1 7 1 8 . . . 24 × 2 5 2 6 . . . 3 4 35 \Large n={1^{2^{3}}+4^{5^{6^{7^{8}}}} \times 9^{10^{11^{...^{14^{15}}}}} +16^{17^{18 ^{...^{24}}}} \times25^{26^{...^{34^{35}}}}}

For n n as defined above, what is the value of i n i^{n} ?

Clarification : i = 1 i=\sqrt{-1} denotes the imaginary unit .

1 -1 1 1 i -i i i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 20, 2016

We note that i n = i n mod 4 i^n = i^{n \text{ mod 4}}

Now, we have:

n ( 1 2 3 + 4 5 6 7 8 × 9 1 0 1 1 . . . 1 4 15 + 16 1 7 1 8 . . . 24 × 2 5 2 6 . . . 3 4 35 ) (mod 4) = 1 + 0 + 0 = 1 (mod 4) Note that 4 4 and 4 16 \begin{aligned} n & \equiv \left( 1^{2^{3}}+\color{#3D99F6}{4}^{5^{6^{7^{8}}}} \times 9^{10^{11^{...^{14^{15}}}}} + \color{#3D99F6}{16}^{17^{18 ^{...^{24}}}} \times25^{26^{...^{34^{35}}}} \right) \text{ (mod 4)} \\ & = 1 + \color{#3D99F6}{0} + \color{#3D99F6}{0} = 1 \text{ (mod 4)} & \small \color{#3D99F6}{\text{Note that }4|4 \text{ and }4|16} \end{aligned}

i n = i 1 = i \implies i^n = i^1 = \boxed{i}

Aha. You managed to post a solution while i was writing mine. Nice :D

M.Zakir A.Halim - 4 years, 11 months ago
M.Zakir A.Halim
Jul 20, 2016
i 1 = 1 i^{1}=\sqrt{-1} i 5 = i 4 + 1 = 1 × i 1 = 1 i^{5}= i^{4+1}= 1 \times i^{1}=\sqrt{-1}
i 2 = 1 i^{2}=-1 i 6 = i 4 + 2 = 1 × i 2 = 1 i^{6}= i^{4+2}= 1 \times i^{2}=-1
i 3 = i 2 × i = i i^{3}=i^{2}\times i=-i i 7 = i 4 + 3 = 1 × i 3 = i i^{7}= i^{4+3}=1 \times i^{3}=-i
i 4 = 1 i^{4}=1 i 8 = i 4 + 4 = 1 × i 4 = 1 i^{8}= i^{4+4}= 1 \times i^{4}=1

From the pattern, we notice that all i m u l t i p l e . o f . 4 i^{multiple.of.4} will be equal to i 4 = 1 i^{4}=1
Thus, all i x i^{x} can be referenced to an i m u l t i p l e . o f . 4 i^{multiple.of.4}

Solution:

n = 1 + [ 4 5 6 7 8 × 9 1 0 1 1 . . . 1 4 15 ] + [ 1 6 1 7 1 8 . . . 24 × 2 5 2 6 . . . 3 4 35 ] n = 1 + [4^{5^{6^{7^{8}}}}\times9^{10^{11^{...^{14^{15}}}}}] + [16^{17^{18^{...^{24}}}}\times25^{26^{...^{34^{35}}}}]

Let n = 1 + a + b n = 1 + a + b

a = 4 5 6 7 8 × 9 1 0 1 1 . . . 1 4 15 a = 4^{5^{6^{7^{8}}}}\times9^{10^{11^{...^{14^{15}}}}} = large multiple of 4

b = 1 6 1 7 1 8 . . . 24 × 2 5 2 6 . . . 3 4 35 b =16^{17^{18^{...^{24}}}}\times25^{26^{...^{34^{35}}}} = large multiple of 4

a + b a+b = large multiple of 4 + large multiple of 4 = larger multiple of 4

i n = i 1 + a + b = i 1 + 4 = i 4 + 1 = i 5 = i 1 = 1 = i \therefore i^{n}=i^{1 + a + b}=i^{1 + 4}=i^{4 + 1}=i^{5}=i^{1}=\sqrt{-1}=\boxed{i}

I actually redid the problem phrasing and format for you. Don't use too much huge characters and italic, too fancy and kiddy.

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

Thanks. Alright, noted.

M.Zakir A.Halim - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...