Imaginary Solution v3

Algebra Level 2

A tiny bit easier than before

x 2 ( x i + 1 ) ( x i 3 ) 2 i x 2 = 4 i \frac{x^2\left(xi+1\right)\left(xi-3\right)}{2ix^2}=4i

What is the greatest value of ( x ) + ( x ) + 1 \Im(x)+\Re(x)+1 ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 18, 2019

x 2 ( x i + 1 ) ( x i 3 ) 2 i x 2 = 4 i For x 0 ( x i + 1 ) ( x i 3 ) 2 i = 4 i Multiply both sides by 2 i ( x i + 1 ) ( x i 3 ) = 8 x 2 2 x i 3 = 8 x 2 2 x i + 5 = 0 x 2 + 2 x i 5 = 0 ( x + 2 + i ) ( x 2 + i ) = 0 \begin{aligned} \frac {x^2(xi+1)(xi-3)}{2ix^2} & = 4i & \small \color{#3D99F6} \text{For }x \ne 0 \\ \frac {(xi+1)(xi-3)}{2i} & = 4i & \small \color{#3D99F6} \text{Multiply both sides by } 2i \\ (xi+1)(xi-3) & = -8 \\ -x^2-2xi-3 & = -8 \\ -x^2-2xi+5 & = 0 \\ x^2+2xi-5 & = 0 \\ (x+2+i)(x-2+i) & = 0 \end{aligned}

{ x = 2 i ( x ) + ( x ) + 1 = 2 1 + 1 = 2 x = 2 i ( x ) + ( x ) + 1 = 2 1 + 1 = 2 \implies \begin{cases} x = -2-i & \implies \Im(x) + \Re(x) + 1 = -2-1+1 = - 2 \\ x = 2-i & \implies \Im(x) + \Re(x) + 1 = 2-1+1 = 2 \end{cases}

Therefore the maximum ( x ) + ( x ) + 1 \Im(x) + \Re(x) + 1 is 2 \boxed 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...