Imaginary Sum

Algebra Level pending

Simplify:

i 0 + i 1 + + i 2009 \large i^0+i^1+···+i^{2009}

Notation: i = 1 i=\sqrt{-1} is the imaginary unit .

i i 1 + i 1+i -1 0 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
Dec 6, 2016

S n = i 0 + i 1 + + i n i S n = i 1 i 2 i n i n + 1 S_{n} = i^{0}+i^{1}+\cdots+i^{n} \\ -i\cdot S_{n} = -i^{1}-i^{2}-\cdots-i^{n}-i^{n+1} Adding both equations \small\color{#3D99F6}{\text{Adding both equations}} S n ( 1 i ) = 1 i n + 1 2 S n = ( 1 + i ) ( 1 i n + 1 ) S n = 1 2 ( 1 + i i n + 1 + i n ) S 2009 = 1 2 ( 1 + i + i ( 1 ) ) S 2009 = 1 + i S_{n} \left( 1-i\right)= 1-i^{n+1} \\ 2S_{n} =(1+i)(1-i^{n+1}) \\ S_{n} = \dfrac{1}{2} \left( 1+i-i^{n+1}+i^{n} \right) \\ S_{2009} = \dfrac{1}{2}\left( 1+i + i -(-1)\right) \\ \boxed{S_{2009} = 1+i }

Nice and elegant solution.

Hana Wehbi - 4 years, 6 months ago

Log in to reply

Thank you :) !

Sabhrant Sachan - 4 years, 6 months ago

We note that the powers of i k i^k are cyclical such that i k = { 1 k mod 4 = 0 i k mod 4 = 1 1 k mod 4 = 2 i k mod 4 = 3 i^k = \begin{cases} 1 & k \text{ mod 4}=0 \\ i & k \text{ mod 4}=1 \\ -1 & k \text{ mod 4}=2 \\ -i & k \text{ mod 4}=3 \end{cases}

Similarly, the sum of i k i^k is also cyclical as follows:

S 0 = i 0 = 1 S 1 = 1 + i S 2 = 1 + i 1 = i S 3 = i i = 0 S 4 = 1 = S 0 . . . = . . . S k = { 1 k mod 4 = 0 1 + i k mod 4 = 1 i k mod 4 = 2 0 k mod 4 = 3 \begin{aligned} S_0 & = i^0 = 1 \\ S_1 & = 1 + i \\ S_2 & = 1 + i - 1 = i \\ S_3 & = i - i = 0 \\ S_4 & = 1 = S_0 \\ ... & = ... \\ \implies S_k & = \begin{cases} 1 & k \text{ mod 4}=0 \\ 1+i & k \text{ mod 4}=1 \\ i & k \text{ mod 4}=2 \\ 0 & k \text{ mod 4}=3 \end{cases} \end{aligned}

Since 2009 mod 4 = 1 S 2009 = 1 + i 2009 \text{ mod 4} = 1 \implies S_{2009} = \boxed{1+i}

Thank you for the nice solution.

Hana Wehbi - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...