Imaginary sum

Algebra Level 3

i + i = ? \large \sqrt{i} + \sqrt{-i} = \, ?

i i i -i 0 0 2 \sqrt2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Abhay Tiwari
Apr 27, 2016

i = e π 2 i=e^{\frac{\pi}{2}}

i = e π 2 \sqrt{i}=\sqrt{e^{\frac{\pi}{2}}}

i = e π 4 = cos ( π 4 ) + i sin ( π 4 ) \sqrt{i}=e^{\frac{\pi}{4}}=\cos(\frac{\pi}{4})+i \sin(\frac{\pi}{4})

similarly, i = e π 4 = cos ( π 4 ) + i sin ( π 4 ) \sqrt{i}=e^{-\frac{\pi}{4}}= \cos(-\frac{\pi}{4})+i \sin(-\frac{\pi}{4})

Then, i + i = cos ( π 4 ) + i sin ( π 4 ) + cos ( π 4 ) + i sin ( π 4 ) = 2 \sqrt{i}+\sqrt{-i}= \cos(\frac{\pi}{4})+i \sin(\frac{\pi}{4})+ \cos(-\frac{\pi}{4})+i \sin(-\frac{\pi}{4})=\sqrt{2}

Perfect solution!

Ashish Menon - 4 years, 11 months ago

I don't believe that i = e^(pi/2), since i is "imaginary", e^(pi/2) is real. Actually, e^(i (pi/2) = cos(pi/2) + i sin(pi/2) = 0 + i = i, and e^(-i pi/2) = cos(pi/2) - i sin(pi/2) = -i. Therefore sqrt(i) + sqrt(-i) = e^(i pi/4) + e^(-i pi/4) = cos(pi/4) + i sin(pi/4) + cos(pi/4) - i sin(pi/4) = 2 cos(pi/4) = 2 sqrt(2)/2 = sqrt(2).

Edwin Gray - 2 years, 2 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...