Third Powers Based On Second Degree Equation?

Algebra Level 3

If a a and b b are roots of x 2 + 1 = x x^{2}+1=x , find a 3 + b 3 a^{3} + b^{3} .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Relevant wiki: Algebraic Manipulation Problem Solving - Basic

x 2 + 1 = x x 2 = x 1 x 2 = x 1 x 3 = x 2 x x 3 = ( x 1 ) x = 1 x 3 = 1 a 3 = 1 , b 3 = 1 a 3 + b 3 = 2 x^2+1=x\implies\color{#D61F06}{\boxed{x^2=x-1}}\\ x^2=x-1\implies x^3=x^2-x\implies x^3=(x-1)-x=-1\\ \color{#3D99F6}{\boxed{x^3=-1}}\\ \implies a^3=-1,b^3=-1\implies \boxed{a^3+b^3=-2}

Viki Zeta
Aug 5, 2016

a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) Given equation can be written as: x 2 x + 1 = 0 Sum of roots a + b = b a = ( 1 ) 1 = 1... ( i ) and, product of roots ab = c a = 1 1 = 1... ( i i ) a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 + 2 a b 2 a b ) (Add ans subtract 2ab) a 3 + b 3 = ( a + b ) ( ( a + b ) 2 3 a b ) a 3 + b 3 = ( 1 ) ( ( 1 ) 2 3 ( 1 ) ) (From (i) and (ii)) a 3 + b 3 = 1 ( 1 3 ) a 3 + b 3 = 2 a^3 + b^3 = (a+b)(a^2-ab+b^2) \\ \text{Given equation can be written as:} \\ x^2-x+1 = 0 \\ \implies \text{Sum of roots a + b = } \dfrac{-b}{a} = \dfrac{-(-1)}{1} = 1 ... (i)\\ \text{and, product of roots ab = } \dfrac{c}{a} = \dfrac{1}{1} = 1 ... (ii) \\ \implies a^3 + b^3 = (a+b)(a^2 -ab + b^2 + 2ab - 2ab) \text{ (Add ans subtract 2ab)} \\ \implies a^3 + b^3 = (a+b)((a+b)^2 - 3ab) \\ \implies a^3 + b^3 = (1)((1)^2 - 3(1)) \text{ (From (i) and (ii))} \\ \implies a^3 + b^3 = 1(1-3) \\ \implies a^3 + b^3 = -2

Good one ! Do you think that this problem should be rated level 3?. It was just basic application of Vieta's formula and the cubic formula .

Anurag Pandey - 4 years, 10 months ago

Log in to reply

This is preety easy. Basic of quadratic formula. This must be level 1

Viki Zeta - 4 years, 10 months ago

Relevant wiki: Complex Numbers

x 2 x + 1 = 0 { α 1 = 1 + 3 i 2 α 2 = 1 3 i 2 α 1 3 = 8 8 α 2 3 = 8 8 α 1 3 + α 2 3 = 2 x^{ 2 }-x+1=0\quad \rightarrow \quad \begin{cases} { \alpha }_{ 1 }=\frac { 1+\sqrt { 3 } i }{ 2 } \\ { \alpha }_{ 2 }=\frac { 1-\sqrt { 3 } i }{ 2 } \end{cases}\\ { \alpha }_{ 1 }^{ \quad 3 }=\frac { -8 }{ 8 } \quad \quad \quad \quad { \alpha }_{ 2 }^{ \quad 3 }=\frac { -8 }{ 8 } \\ { \quad \quad \quad \quad \alpha }_{ 1 }^{ \quad 3 }+{ \alpha }_{ 2 }^{ \quad 3 }=-2

Nick Ryan
Aug 15, 2016

From Vieta's formula, we have a + b = 1 a + b = 1 and a b = 1 ab = 1 Thus ( a + b ) 3 = 1 3 = 1 (a + b)^3 = 1^3 = 1 . Expanding the left hand side gives a 3 + b 3 + 3 a b ( a + b ) = a 3 + b 3 + 3 = 1 a^3 + b^3 + 3ab (a + b) = a^3 + b^3 +3 = 1 Hence a 3 + b 3 = 1 3 = 2 a^3 + b^3 = 1 - 3 = -2

Karanvir Singh
Aug 6, 2016

X^2 - X + 1 = f (X) f (X) = (X-a)(X-b) where a and b are complex roots of this equation a = -w, b=-w^2 where w and w^2 are cube roots of unity w = cis(2pi/3) By demorvis theorum Cis(2pi)+Cis(4pi) = 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...