Let the number of all complex numbers which satisfy be .
If , then locus of is .
Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let z 1 = x + i y and z 2 = p + i q ,
∴ x 3 + 3 x 2 i y + 3 x i 2 y 2 + i 3 y 3 = x − i y
⇒ ( x 3 − 3 x y 2 ) + i ( 3 x 2 y − y 3 ) = x − i y
Equating real and imaginery parts, we have x 3 − 3 x y 2 = x and 3 x 2 y − y 3 = − y
Thus we have to solve the following 4 pairs of simultaneous equations:
x = 0 , y = 0 ; x = 0 , 3 x 2 − y 2 + 1 = 0 ; y = 0 , x 2 − 3 y 2 − 1 = 0 ; x 2 − 3 y 2 − 1 = 0 , 3 x 2 − y 2 + 1 = 0
Solve to get z 1 = 0 , ± 1 , ± i
a r g ( ( p + 2 ) 2 + q 2 p 2 + q 2 − 4 + 4 q i ) = 4 π
⇒ p 2 + q 2 − 4 4 q = t a n 4 π
⇒ p 2 + ( q − 2 ) 2 = 8
∴ ∣ z 2 − 2 i ∣ = 8
⇒ a = 5 , b = 2 , c = 8
A n s : 1 5 ⌣ ¨