Complex-city

Algebra Level 5

Let the number of all complex numbers z 1 z_1 which satisfy z 1 3 z 1 ˉ = 0 z_1^{3}-\bar{z_1}=0 be a a .

If arg ( z 2 2 z 2 + 2 ) = π 4 \arg\left(\dfrac{z_2-2}{z_2+2}\right)=\dfrac{\pi}{4} , then locus of z 2 z_2 is z 2 b i = c |z_2-bi|=\sqrt{c} .

Find a + b + c a+b+c .

13 16 None of these choices 11

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rachit Shukla
May 13, 2016

Let z 1 = x + i y z_1=x+iy and z 2 = p + i q z_2=p+iq ,

\therefore x 3 + 3 x 2 i y + 3 x i 2 y 2 + i 3 y 3 = x i y x^{3}+3x^{2}iy+3xi^{2}y^{2}+i^{3}y^{3}=x-iy

\Rightarrow ( x 3 3 x y 2 ) + i ( 3 x 2 y y 3 ) = x i y (x^{3}-3xy^{2})+i(3x^{2}y-y^{3})=x-iy

Equating real and imaginery parts, we have x 3 3 x y 2 = x x^{3}-3xy^{2}=x and 3 x 2 y y 3 = y 3x^{2}y-y^{3}=-y

Thus we have to solve the following 4 4 pairs of simultaneous equations:

x = 0 x=0 , y = 0 y=0 ; x = 0 x=0 , 3 x 2 y 2 + 1 = 0 3x^{2}-y^{2}+1=0 ; y = 0 y=0 , x 2 3 y 2 1 = 0 x^{2}-3y^{2}-1=0 ; x 2 3 y 2 1 = 0 x^{2}-3y^{2}-1=0 , 3 x 2 y 2 + 1 = 0 3x^{2}-y^{2}+1=0

Solve to get z 1 = 0 , ± 1 , ± i z_1=0,\pm1,\pm i

a r g ( p 2 + q 2 4 + 4 q i ( p + 2 ) 2 + q 2 ) = π 4 arg(\frac{p^{2}+q^{2}-4+4qi}{(p+2)^{2}+q^{2}})=\frac{\pi}{4}

\Rightarrow 4 q p 2 + q 2 4 = t a n π 4 \frac{4q}{p^{2}+q^{2}-4}=tan\frac{\pi}{4}

\Rightarrow p 2 + ( q 2 ) 2 = 8 p^{2}+(q-2)^{2}=8

\therefore z 2 2 i = 8 |z_2-2i|=\sqrt{8}

\Rightarrow a = 5 , b = 2 , c = 8 a=5, b=2, c=8

A n s : 15 Ans: 15 ¨ \ddot\smile

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...