Imagining the imaginary

Algebra Level 3

A student has a lesson on Complex Numbers and makes the following conclusions:

  1. R I \mathbb{R} \subset \mathbb{I}
  2. I C \mathbb{I} \subset \mathbb{C}
  3. i 1 = i \sqrt[-1]{-i} = i
  4. z ˉ z = z \sqrt[]{\bar{z}z} = |z|
  5. z = r cos ( θ ) + i r sin ( θ ) z = r\cos(\theta)+ir\sin(\theta)

Which of the above is/are false ?

Notes:

  • i = 1 i = \sqrt {-1} is the imaginary unit
  • R \mathbb{R} is the set of all real numbers
  • I \mathbb{I} is the set of all imaginary numbers
  • C \mathbb{C} is the set of all complex numbers
  • z = a + i b ; a , b R z=a+ ib; a,b \in \mathbb R is the general form of a complex number
  • z ˉ = a i b \bar{z} = a-ib is the conjugate of z z
  • z = a 2 + b 2 |z| = \sqrt{a^2+b^2} is the modulus of z z
All of them are true 1 2 3 4 5 None of them is true

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Sep 3, 2016

1. Now, every Real numbers are Imaginary numbers. Take for example, 2 = 2 i 2 , which is purely-real but imaginary 2. Every imaginary number is a subset of complex number, so it’s true. 3. Consider the following equation i 1 = 1 i = 1 i × i i = i i 2 = i 1 = i i 1 = i i 1 1 = i 1 1 i = i 1 4. Using properties of complex numbers we have, 1 z = z ˉ z 2 z 2 = z z ˉ z = z z ˉ 5. Using Polar form of complex numbers, we can state that. \text{1. Now, every Real numbers are Imaginary numbers. Take for example, } \\ \sqrt[]{2} = -\sqrt[]{2} * i^2, \text{ which is purely-real but imaginary} \\ \text{2. Every imaginary number is a subset of complex number, so it's true.} \\ \text{3. Consider the following equation} \\ i^{-1} = \dfrac{1}{i} = \dfrac{1}{i} \times \dfrac{i}{i} \\ = \dfrac{i}{i^2} = \dfrac{i}{-1} = -i \\ i^{-1} = -i \\ i^{\dfrac{-1}{-1}} = -i^{\dfrac{1}{-1}} \\ i = \sqrt[-1]{-i} \\ \text{4. Using properties of complex numbers we have, } \\ \dfrac{1}{z} = \dfrac{\bar{z}}{|z|^2} \\ |z|^2 =z\bar{z} \\ |z| = \sqrt[]{z\bar{z}} \\ \text{5. Using Polar form of complex numbers, we can state that.}

It is not true that "all real numbers are imaginary". Real number are of the form a + 0 i a + 0 i . Imaginary numbers are of the form 0 + b i 0 + bi .

2 \sqrt{2} is real, and 2 i \sqrt{2} i is imaginary. The only real and imaginary number is 0.

Calvin Lin Staff - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...