IMO 1963

Geometry Level 3

cos π 7 cos 2 π 7 + cos 3 π 7 = ? \large \cos \dfrac\pi 7 - \cos\dfrac{2\pi}7 + \cos \dfrac{3\pi}7 = \, ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 18, 2016

Let S= cos π 7 + cos 3 π 7 + cos 5 π 7 ( cos 2 π 7 = cos 5 π 7 ) \cos \dfrac\pi 7 + \cos\dfrac{3\pi}7 + \cos \dfrac{5\pi}7 \quad\quad \small{(\because - \cos\dfrac{2\pi}7= \cos\dfrac{5\pi}7)} ( 2 sin π 7 ) × S = sin 2 π 7 sin 0 + sin 4 π 7 sin 2 π 7 + cos 6 π 7 sin 4 π 7 (2 \sin\dfrac{\pi}{7})\times S=\sin\dfrac{2\pi}7- \sin0+\sin\dfrac{4\pi}7- \sin\dfrac{2\pi}7+ \cos\dfrac{6\pi}7- \sin\dfrac{4\pi}7 = sin 6 π 7 ( Using 2 cos A sin B = s i n ( A B ) s i n ( A + B ) ) =\sin\dfrac{6\pi}7 \small{\color{#20A900}{(\text{Using}\quad 2\cos A \sin B=sin(A-B)-sin(A+B)})} S = 0.5 sin 6 π 7 sin π 7 \Rightarrow S=0.5 \dfrac{\sin\dfrac{6\pi}{7}}{\sin\dfrac{\pi}{7}} = 0.5 =0.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...