Implicit differentiation

Calculus Level 4

x 2 + 25 y 2 = 100 x^2+25y^2=100

Find d 2 y d x 2 \frac{d^2y}{dx^2} of the equation above.

4 25 y 3 \dfrac{-4}{25y^3} 25 y 2 + x 2 625 y 3 \dfrac{-25y^2+x^2}{625y^3} 100 625 y 3 \dfrac{100}{625y^3} x 25 y \dfrac{-x}{25y}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x 2 + 25 y 2 = 100 x^2+25y^2=100

By Implicit differentiation, we have

2 x + 50 y d y d x = 0 2x+50y\dfrac{dy}{dx}=0 \implies d y d x = x 25 y \dfrac{dy}{dx}=\dfrac{-x}{25y}

By quotient rule, we have

d 2 y d x 2 = 25 y ( 1 ) ( x ) ( 25 d y d x ) ( 25 y ) 2 \dfrac{d^2y}{dx^2}=\dfrac{25y(-1)-(-x)\left(25\dfrac{dy}{dx}\right)}{(25y)^2}

= 25 y + 25 x d y d x 625 y 2 =\dfrac{-25y+25x\dfrac{dy}{dx}}{625y^2}

Substitute d y d x = x 25 y \dfrac{dy}{dx}=\dfrac{-x}{25y}

= 25 y + 25 x ( x 25 y ) 625 y 2 =\dfrac{-25y+25x\left(\dfrac{-x}{25y}\right)}{625y^2}

= 25 y x 2 y 625 y 2 =\dfrac{-25y-\dfrac{x^2}{y}}{625y^2}

= 25 y 2 x 2 y × 1 625 y 2 =\dfrac{-25y^2-x^2}{y} \times \dfrac{1}{625y^2}

= 25 y 2 x 2 625 y 3 =\dfrac{-25y^2-x^2}{625y^3}

= 1 ( 25 y 2 + x 2 ) 625 y 3 =\dfrac{-1(25y^2+x^2)}{625y^3}

substitute x 2 + 25 y 2 = 100 x^2+25y^2=100

= 100 625 y 3 =\dfrac{-100}{625y^3}

= 4 25 y 3 =\dfrac{-4}{25y^3}

You made a typo in the first dy/dx. - 4 should be - x ;)

Peter van der Linden - 3 years, 8 months ago

Same i did but I forget about the about minus sign just before I submit answer. :)

Naren Bhandari - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...