Consider a decaying exponential function of time.
y ( t ) = e − t
Suppose we use the Implicit Euler integration method to discretely model this function.
y k = y k − 1 + y ˙ k Δ t y ˙ k = − y k
In the above equation, y k is the present value of the function and y k − 1 is the previous value of the function. The simulated function is "monotonic" if y k − 1 y k > 0 , and "oscillatory" if y k − 1 y k < 0 . The function "converges" if ∣ ∣ ∣ y k − 1 y k ∣ ∣ ∣ < 1 , and "diverges" if ∣ ∣ ∣ y k − 1 y k ∣ ∣ ∣ > 1 .
Assuming Δ t > 0 , which of the listed behaviors is possible ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
y ˙ = − e − t ⟹ y ˙ = − y
y k = y k − 1 + Δ t y ˙ k y k = y k − 1 − Δ t y k ∵ y ˙ k = − y k y k − 1 y k = 1 + Δ t 1 ∵ Δ t > 0 y k − 1 y k = 1 + Δ t 1 > 0 y k − 1 y k = 1 + Δ t 1 < 1
Judging by the conditions satisfied, the only possibility is monotonic convergence. This ensures that the implicit Euler solver guarantees a stable solution despite a higher time-step, unlike the explicit Euler solver.