Implicit Function in 2020

Calculus Level 5

Assume that f ( x ) f(x) is continuous on the interval ( , ) (-\infty, \infty) and satisfies that x sin f ( x ) + cos f ( x ) = x x \sin f(x)+\cos f(x) = x for all real numbers x . x. If f ( 1 ) = 2020 π , f(1)=2020 \pi, find the value of f ( 2 ) . \lfloor f(-2) \rfloor.


The answer is 6342.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Arturo Presa
Sep 27, 2020

Let us solve the equation x sin y + cos y = x x \sin y+\cos y=x with respect to y . y. First, we can solve this equation with respect to x , x, then we obtain
x = cos y 1 sin y . ( ) x=\frac{\cos y}{1-\sin y}. \;\;\; (*) We can transform the right side in the following way: x = cos y 1 sin y = sin ( π 2 y ) 1 cos ( π 2 y ) = 2 sin ( π 4 y 2 ) cos ( π 4 y 2 ) 2 sin 2 ( π 4 y 2 ) = cos ( π 4 y 2 ) sin ( π 4 y 2 ) = 1 tan ( π 4 y 2 ) x= \frac{\cos y}{1-\sin y}= \frac{\sin(\frac{\pi}{2}-y)}{1-\cos(\frac{\pi}{2}-y)}=\frac{2 \sin(\frac{\pi}{4}-\frac{y}{2})\cos(\frac{\pi}{4}-\frac{y}{2})}{2 \sin^2(\frac{\pi}{4}-\frac{y}{2})}=\frac{\cos(\frac{\pi}{4}-\frac{y}{2})}{\sin(\frac{\pi}{4}-\frac{y}{2})}=\frac{1}{\tan(\frac{\pi}{4}-\frac{y}{2})}
Now, we can solve the last equation for tan ( π 4 y 2 ) , \tan(\frac{\pi}{4}-\frac{y}{2}), then we obtain that tan ( π 4 y 2 ) = 1 x \tan(\frac{\pi}{4}-\frac{y}{2})=\frac{1}{x} and solving this equation for y , y, so we obtain that y = π 2 2 arctan ( 1 x ) + 2 n π y= \frac{\pi}{2}- 2 \arctan(\frac{1}{x}) +2 n \pi where n n is any integer number. You can notice that this function is discontinuous at x = 0 x=0 because the one sided limits from the left and from the right are different. To construct a function f ( x ) f(x) that is a continuous solution of the given implicit equation on ( , ) , (-\infty, \infty), we need to make f ( x ) = π 2 2 arctan ( 1 x ) + 2 n π f(x)= \frac{\pi}{2}- 2 \arctan(\frac{1}{x}) +2 n \pi for x > 0 , x>0, f ( x ) = π 2 2 arctan ( 1 x ) + 2 ( n 1 ) π f(x)= \frac{\pi}{2}- 2 \arctan(\frac{1}{x}) +2 (n-1) \pi for x < 0 , x<0, and f ( 0 ) = π 2 + 2 n π . f(0)=-\frac{\pi}{2}+2n\pi. Using the condition that f ( 1 ) = 2020 π , f(1)=2020 \pi, we obtain that n = 2020 n=2020 and therefore f ( 2 ) = π 2 2 arctan ( 1 2 ) + 2018 π = 6342.23... f(-2)= \frac{\pi}{2}- 2 \arctan(\frac{1}{-2}) +2018 \pi=6342.23... Then the answer to the question will be 6342. \boxed{6342.}

(*)Note: When you divide both sides of the original equation by 1 sin y 1-\sin y you are losing the solutions that can be obtained from the equation sin y = 1. \sin y=1. These are the functions of the form f ( x ) = π 2 + 2 n π f(x)=\frac{\pi}{2}+ 2n\pi for any number integer n . n. None of the graphs of these functions passes through ( 1 , 2020 π ) . (1, 2020\pi). That is why we don't have to worry about them.

Nice Sunday Morning problem, Arturo. I do enjoy your functional equation postings very much.....they are challenging!

tom engelsman - 8 months, 2 weeks ago

Log in to reply

Thank you, Tom. I am glad that you enjoyed this problem. Have a wonderful day!

Arturo Presa - 8 months, 2 weeks ago
Mark Hennings
Sep 27, 2020

If we write α ( x ) = tan 1 x \alpha(x) = \tan^{-1}x , then we see that cos ( f ( x ) α ( x ) ) = x 1 + x 2 = sin α ( x ) = cos ( 1 2 π α ( x ) ) \cos\big(f(x) - \alpha(x)\big) \; = \; \tfrac{x}{\sqrt{1+x^2}} \;= \; \sin\alpha(x) \; =\; \cos\big(\tfrac12\pi - \alpha(x)\big) so that 0 = cos ( f ( x ) α ( x ) ) cos ( 1 2 π α ( x ) ) = 2 sin ( 1 2 f ( x ) 1 4 π ) sin ( 1 2 f ( x ) + 1 4 π α ( x ) ) 0 \; = \; \cos\big(f(x) - \alpha(x)\big) - \cos\big(\tfrac12\pi - \alpha(x)\big) \; = \; -2\sin\big(\tfrac12f(x) - \tfrac14\pi\big) \sin\big(\tfrac12f(x) + \tfrac14\pi - \alpha(x)\big) and hence either f ( x ) = 1 2 π + 2 n π n Z f(x) \; =\; \tfrac12\pi + 2n\pi \hspace{2cm} n \in \mathbb{Z} or else f ( x ) = 2 n π 1 2 π + 2 α ( x ) n Z f(x) \; = \; 2n\pi - \tfrac12\pi + 2\alpha(x) \hspace{2cm} n \in \mathbb{Z} Since f ( 1 ) = 2020 π f(1) = 2020\pi and f f is continuous on R \mathbb{R} we deduce that f ( x ) = 2020 π 1 2 π + 2 α ( x ) = 2020 π 1 2 π + 2 tan 1 x x R f(x) \; =\; 2020\pi - \tfrac12\pi + 2\alpha(x) \; =\; 2020\pi - \tfrac12\pi + 2\tan^{-1}x \hspace{2cm} x \in \mathbb{R} Putting x = 2 x = -2 we deduce that f ( 2 ) = 6432 \lfloor f(-2)\rfloor = \boxed{6432} .

Chew-Seong Cheong
Sep 28, 2020

Let f ( x ) = θ f(x) = \theta ; then we have:

x = x sin θ + cos θ x = cos θ 1 sin θ Let t = tan θ 2 = 1 t 2 1 + t 2 1 2 t 1 + t 2 = 1 t 2 1 + t 2 2 t = 1 + t 1 t = 1 + tan θ 2 1 tan θ 2 = tan ( f ( x ) 2 + π 4 ) f ( x ) = 2 ( 2 n π + tan 1 x ) π 2 where n is an integer. f ( 1 ) = 4 n π + 2 × π 4 π 2 = 2020 π n = 505 f ( x ) = 2 tan 1 x + 2019.5 π f ( 2 ) = 2 tan 1 ( 2 ) + 2019.5 π 6342.232066 f ( 2 ) = 6342 \begin{aligned} x & = x \sin \theta + \cos \theta \\ x & = \frac {\cos \theta}{1-\sin \theta} & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ & = \frac {\frac {1-t^2}{1+t^2}}{1-\frac {2t}{1+t^2}} = \frac {1-t^2}{1+t^2-2t} = \frac {1+t}{1-t} \\ & = \frac {1+\tan \frac \theta 2}{1-\tan \frac \theta 2} = \tan \left(\frac {f(x)}2 + \frac \pi 4\right) \\ \implies f(x) & = 2 (2\blue n\pi + \tan^{-1} x) - \frac \pi 2 & \small \blue{\text{where }n \text{ is an integer.}} \\ f(1) & = 4n\pi + 2 \times \frac \pi 4 - \frac \pi 2 = 2020 \pi & \small \blue{\implies n = 505} \\ \implies f(x) & = 2\tan^{-1} x + 2019.5 \pi \\ f(-2) & = 2\tan^{-1}(-2) + 2019.5\pi \approx 6342.232066 \\ \implies \lfloor f(-2)\rfloor & = \boxed{6342} \end{aligned}

Tom Engelsman
Oct 3, 2020

Let us rewrite the above functional equation according to:

x sin f ( x ) + 1 sin 2 f ( x ) = x x \sin f(x) + \sqrt{1-\sin^{2}f(x)} = x ;

or 1 sin 2 f ( x ) = x 2 [ 1 2 sin f ( x ) + sin 2 f ( x ) ] 1-\sin^{2}f(x) = x^2[1 - 2\sin f(x) + \sin^{2}f(x)] ;

or 0 = ( x 2 + 1 ) sin 2 f ( x ) 2 x 2 sin f ( x ) + ( x 2 1 ) ; 0 = (x^2 + 1)\sin^{2} f(x) -2x^2 \sin f(x) + (x^2 - 1);

or sin f ( x ) = 2 x 2 ± 4 x 4 4 ( x 2 + 1 ) ( x 2 1 ) 2 ( x 2 + 1 ) = x 2 ± x 4 x 4 + 1 x 2 + 1 = x 2 ± 1 x 2 + 1 = 1 , x 2 1 x 2 + 1 \sin f(x) = \frac{2x^2 \pm \sqrt{4x^4 - 4(x^2+1)(x^2-1)}}{2(x^2+1)} = \frac{x^2 \pm \sqrt{x^4 - x^4 + 1}}{x^2+1} = \frac{x^2 \pm 1}{x^2+1} = 1, \frac{x^2-1}{x^2+1} ;

or f ( x ) = arcsin ( 1 ) , arcsin ( x 2 1 x 2 + 1 ) ; f(x) = \arcsin(1), \arcsin(\frac{x^2-1}{x^2+1});

or f ( x ) = π 2 , arcsin ( x 2 1 x 2 + 1 ) ; f(x) = \frac{\pi}{2}, \arcsin(\frac{x^2-1}{x^2+1});

Since f ( 1 ) = 2020 π f(1) = 2020\pi , the former constant function poses a contradiction. This leaves us with the latter function which is satisfied according to 2020 π = arcsin ( 1 2 1 1 2 + 1 ) . 2020\pi = \arcsin (\frac{1^2-1}{1^2+1}). We are now interested in computing f ( 2 ) f(-2) , and if we consider:

arcsin ( x 2 1 x 2 + 1 ) = arccos ( 2 x x 2 + 1 ) f ( 2 ) = arcsin ( 3 5 ) = arccos ( 4 5 ) \arcsin(\frac{x^2-1}{x^2+1}) = \arccos(\frac{2x}{x^2+1}) \Rightarrow f(-2) = \arcsin (\frac{3}{5}) = \arccos(-\frac{4}{5})

we have an angle in the second quadrant of the x y xy- plane. Thus, f ( 2 ) = 2019 π arcsin ( 3 5 ) 2019 π arcsin ( 3 5 ) = 6 , 342 . f(-2) = 2019\pi - \arcsin(\frac{3}{5}) \Rightarrow \lfloor 2019\pi - \arcsin(\frac{3}{5}) \rfloor = \boxed{6,342}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...