Implicit Integral

Calculus Level 3

d y d x = 3 x y + 2 2 \dfrac{dy}{dx} = \dfrac{3}{\dfrac{x}{y} + 2} - 2

Let f ( x , y ) f(x,y) be a graph with its derivative as shown above.

If the graph f f passes through the point ( 1 , 1 ) (1,1) , what is the maximum y y -value on the graph?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 10, 2016

d y d x = 3 x y + 2 2 Let y = v x v + x d v d x = 1 1 v + 2 2 x d v d x = 2 ( v 2 + v + 1 ) 2 v + 1 2 v + 1 v 2 + v + 1 d v = 2 x d x Integrate both sides ln ( v 2 + v + 1 ) = 2 ln x v 2 + v + 1 = 1 x 2 y 2 x 2 + y x + 1 = 1 x 2 y 2 + x y + x 2 = C where C is the constant of integration. C = 3 Putting x = 1 and y = 1 y 2 + x y + x 2 = C . . . ( 1 ) \begin{aligned} \frac {dy}{dx} & = \frac 3{\frac xy+2} - 2 & \small {\color{#3D99F6}\text{Let }y=vx} \\ v + x \frac {dv}{dx} & = \frac 1{\frac 1v+2} - 2 \\ x \frac {dv}{dx} & = - \frac {2(v^2+v+1)}{2v+1} \\ \frac {2v+1}{v^2+v+1} dv & = - \frac 2x dx & \small {\color{#3D99F6}\text{Integrate both sides}} \\ \ln (v^2+v+1) & = - 2\ln x \\ v^2+v+1 & = \frac 1{x^2} \\ \frac {y^2}{x^2} + \frac yx + 1 & = \frac 1{x^2} \\ y^2+xy+x^2 & = {\color{#3D99F6}C} & \small {\color{#3D99F6}\text{where }C \text{ is the constant of integration.}} \\ \implies C & = 3 & \small {\color{#3D99F6}\text{Putting }x=1 \text{ and }y=1} \\ \implies y^2+xy+x^2 & = C \quad ...(1) \end{aligned}

Maximum of y y occurs when d y d x = 0 \dfrac {dy}{dx} = 0 , that is:

3 x y + 2 = 2 3 y x + 2 y = 2 y = 2 x ( 1 ) : 4 x 2 2 x 2 + x 2 = 3 3 x 2 = 3 x = ± 1 \begin{aligned} \frac 3{\frac xy+2} & = 2 \\ \frac {3y}{x+2y} & = 2 \\ \implies y & = - 2x \\ (1): \quad 4x^2-2x^2+x^2 & = 3 \\ 3x^2 & = 3 \\ x & = \pm 1 \end{aligned}

Therefore, maximum y m a x = 2 ( 1 ) = 2 y_{max} = -2(-1) = \boxed{2} as d 2 y d x 2 x = 1 < 0 \dfrac {d^2y}{dx^2}\bigg|_{x=-1} < 0 (see Note).


Note:

d y d x = 3 x y + 2 2 = 2 x + y x + 2 y d 2 y d x 2 = ( 2 + d y d x ) ( x + 2 y ) + ( 1 + 2 d y d x ) ( 2 x + y ) ( x + 2 y ) 2 Putting x = 1 = ( 2 + 0 ) ( 1 + 4 ) + ( 1 + 0 ) ( 2 + 2 ) ( 1 + 4 ) 2 < 0 \begin{aligned} \frac {dy}{dx} & = \frac 3{\frac xy+2} - 2 = -\frac {2x+y}{x+2y} \\ \frac {d^2y}{dx^2} & = -\frac {\left(2+\frac {dy}{dx}\right)(x+2y)+\left(1+2\frac {dy}{dx}\right)(2x+y)}{(x+2y)^2} & \small {\color{#3D99F6}\text{Putting }x=-1} \\ & = -\frac {\left(2+0\right)(-1+4)+\left(1+0\right)(-2+2)}{(-1+4)^2} \\ & < 0 \end{aligned}

Kushal Bose
Nov 9, 2016

After simplifying the equation :

d y d x = 2 x y x + 2 y x d y + 2 y d y = 2 x d x y d x x d y + y d x + 2 y d y + 2 x d x = 0 d ( x y ) + d ( x 2 + y 2 ) = 0 Integrating both sides x y + x 2 + y 2 = c where c is an integration constant putting x=1 and y=1 in the equation the c=3 x 2 + y 2 + x y = 3 Using quadratic w.r.t. x D = y 2 4 ( y 2 3 ) 0 3 y 2 12 y 2 So, maximum value of y=2 \displaystyle \frac{dy}{dx}=\frac{-2x-y}{x+2y} \\ \implies xdy+2ydy=-2xdx-ydx \\ \implies xdy+ydx+2ydy+2xdx=0 \\ \implies d(xy)+d(x^2+y^2)=0 \\ \color{#3D99F6}\text{Integrating both sides} \\ \implies xy+x^2+y^2=c \:\: \text{where c is an integration constant} \\ \text{putting x=1 and y=1 in the equation the c=3} \\ \implies x^2+y^2+xy=3 \\ \text{Using quadratic w.r.t. x }\\ D=\sqrt{y^2-4(y^2-3)}\geq 0 \\ 3y^2\leq12 \\ \implies |y|\leq2 \\ \text{So, maximum value of y=2}

I just love this sum, a great use of calculus in this one, @Worranat Pakornrat .. thank you.

Md Zuhair - 4 years, 7 months ago

Log in to reply

You're welcome. 😉

Worranat Pakornrat - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...