d x d y = y x + 2 3 − 2
Let f ( x , y ) be a graph with its derivative as shown above.
If the graph f passes through the point ( 1 , 1 ) , what is the maximum y -value on the graph?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
After simplifying the equation :
d x d y = x + 2 y − 2 x − y ⟹ x d y + 2 y d y = − 2 x d x − y d x ⟹ x d y + y d x + 2 y d y + 2 x d x = 0 ⟹ d ( x y ) + d ( x 2 + y 2 ) = 0 Integrating both sides ⟹ x y + x 2 + y 2 = c where c is an integration constant putting x=1 and y=1 in the equation the c=3 ⟹ x 2 + y 2 + x y = 3 Using quadratic w.r.t. x D = y 2 − 4 ( y 2 − 3 ) ≥ 0 3 y 2 ≤ 1 2 ⟹ ∣ y ∣ ≤ 2 So, maximum value of y=2
I just love this sum, a great use of calculus in this one, @Worranat Pakornrat .. thank you.
Problem Loading...
Note Loading...
Set Loading...
d x d y v + x d x d v x d x d v v 2 + v + 1 2 v + 1 d v ln ( v 2 + v + 1 ) v 2 + v + 1 x 2 y 2 + x y + 1 y 2 + x y + x 2 ⟹ C ⟹ y 2 + x y + x 2 = y x + 2 3 − 2 = v 1 + 2 1 − 2 = − 2 v + 1 2 ( v 2 + v + 1 ) = − x 2 d x = − 2 ln x = x 2 1 = x 2 1 = C = 3 = C . . . ( 1 ) Let y = v x Integrate both sides where C is the constant of integration. Putting x = 1 and y = 1
Maximum of y occurs when d x d y = 0 , that is:
y x + 2 3 x + 2 y 3 y ⟹ y ( 1 ) : 4 x 2 − 2 x 2 + x 2 3 x 2 x = 2 = 2 = − 2 x = 3 = 3 = ± 1
Therefore, maximum y m a x = − 2 ( − 1 ) = 2 as d x 2 d 2 y ∣ ∣ ∣ ∣ x = − 1 < 0 (see Note).
Note:
d x d y d x 2 d 2 y = y x + 2 3 − 2 = − x + 2 y 2 x + y = − ( x + 2 y ) 2 ( 2 + d x d y ) ( x + 2 y ) + ( 1 + 2 d x d y ) ( 2 x + y ) = − ( − 1 + 4 ) 2 ( 2 + 0 ) ( − 1 + 4 ) + ( 1 + 0 ) ( − 2 + 2 ) < 0 Putting x = − 1