Implicit recursion!

Algebra Level 3

Let g ( x ) g(x) the function for all real x x such that :

  • g ( x ) = g ( x + 1 ) + g ( x 1 ) \boldsymbol g(x)=g(x+1)+g(x-1)
  • g ( 15 ) = 20 \boldsymbol g(15)=20
  • g ( 20 ) = 15 \boldsymbol g(20)=15

Evaluate g ( 20152015 ) \boldsymbol |g(20152015)|


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maggie Miller
Aug 13, 2015

Note g ( x ) = g ( x + 1 ) + g ( x 1 ) g(x)=g(x+1)+g(x-1) and g ( x + 1 ) = g ( x ) + g ( x + 2 ) g(x+1)=g(x)+g(x+2) , so g ( x 1 ) = g ( x + 2 ) g(x-1)=-g(x+2) . Therefore, whenever x y ( m o d 3 ) x\equiv y \pmod{3} , g ( x ) = g ( y ) |g(x)|=|g(y)| .

We have g ( 17 ) = g ( 17 + 3 ) = g ( 20 ) = 15 g(17)=-g(17+3)=-g(20)=-15 , so g ( 16 ) = g ( 15 ) + g ( 17 ) = 20 15 = 5 g(16)=g(15)+g(17)=20-15=5 . Then since 20152015 1 16 ( m o d 3 ) 20152015\equiv 1\equiv 16\pmod{3} , g ( 20152015 ) = g ( 16 ) = 5 = 5 |g(20152015)|=|g(16)|=|5|=\boxed{5} .

(In fact, 20152015 16 20152015-16 is an odd multiple of 3 3 , so g ( 20152015 ) = g ( 16 ) = 5 g(20152015)=-g(16)=-5 .)

Brilliant solution :)

Abdeslem Smahi - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...