Implicit Turning Point

Calculus Level 2

A function is defined f ( x ) = x x 2 f(x)=x^{x^2} for x > 0 x>0 . What is the x x -coordinate of the turning point on y = f ( x ) y=f(x) ?

1 e \frac 1{\sqrt e} 2 e \sqrt[e]{2} e \sqrt{e} e e 2 e^{e^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Morgan Jones
Aug 10, 2019

y = x x 2 ln y = x 2 ln x 1 y d y d x = x ( 2 ln x + 1 ) d y d x = x y ( 2 ln x + 1 ) d y d x = x × x x 2 ( 2 ln x + 1 ) d y d x = x x 2 + 1 ( 2 ln x + 1 ) = 0 x x 2 + 1 = 0 n o s o l u t i o n s i n d o m a i n ( 2 ln x + 1 ) = 0 x = e 1 / 2 x = 1 e y=x^{x^2} \\ \ln{y}=x^2\ln{x} \\ \frac{1}{y}\frac{dy}{dx} = x(2\ln{x} + 1)\\ \frac{dy}{dx} = xy(2\ln{x} + 1) \\ \frac{dy}{dx} = x\times x^{x^2}(2\ln{x} + 1) \\ \frac{dy}{dx} = x^{x^2 + 1}(2\ln{x} + 1) = 0\\ x^{x^2 + 1} = \ce{0 -> no solutions in domain} \\ (2\ln{x} + 1) = 0 \\ x = e^{-1/2} \\ x = \frac{1}{\sqrt{e}}

Chew-Seong Cheong
Aug 10, 2019

y = f ( x ) = x x 2 = e x 2 ln x d y d x = ( 2 x ln x + x ) x x 2 \begin{aligned} y & = f(x) = x^{x^2} = e^{x^2\ln x} \\ \implies \frac {dy}{dx} & = (2x\ln x + x) x^{x^2} \end{aligned}

Turning point occurs when d y d x = 0 \dfrac {dy}{dx} = 0 . That is:

x ( 2 ln x + x ) x x 2 = 0 For x > 0 2 ln x + 1 = 0 ln x = 1 2 x = e 1 2 = 1 e \begin{aligned} x (2\ln x + x) x^{x^2} & = 0 & \small \color{#3D99F6} \text{For }x > 0 \\ \implies 2\ln x + 1 & = 0 \\ \ln x & = - \frac 12 \\ x & = e^{-\frac 12} = \boxed{\frac 1{\sqrt e}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...