Impossible Integration

Calculus Level 3

lim n 0 1 0 a 1 x n 1 x d x a d a \large \lim_{n \to \infty} \int_0^1 \frac {\int_0^a \frac {1-x^n}{1-x} dx}a da

Evaluate the integral above, where n n is an integer.

2 ln ( 2 ) 6 \frac {\ln(2)}6 π 2 6 \frac {\pi^2}6 ln ( 10 ) 12 \frac {\ln(10)}{12}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 24, 2018

Relevant wiki: Riemann Zeta Function

L = lim n 0 1 0 a 1 x n 1 x d x a d a = lim n 0 1 0 a ( 1 x ) ( 1 + x + x 2 + + x n 1 ) 1 x d x a d a = lim n 0 1 0 a ( 1 + x + x 2 + + x n 1 ) d x a d a = lim n 0 1 x + x 2 2 + x 3 3 + + x n n 0 a a d a = lim n 0 1 a + a 2 2 + a 3 3 + + a n n a d a = lim n 0 1 ( 1 + a 2 + a 2 3 + + a n 1 n ) d a = lim n [ a + a 2 2 2 + a 3 3 2 + + a n n 2 ] 0 1 = n = 1 1 n 2 = ζ ( 2 ) = π 2 6 where ζ ( ) denotes the Riemann zeta function. \begin{aligned} L & = \lim_{n \to \infty} \int_0^1 \frac {\int_0^a \frac {1-x^n}{1-x}dx}a\ da \\ & = \lim_{n \to \infty} \int_0^1 \frac {\int_0^a \frac {(1-x)(1+x+x^2+\cdots +x^{n-1})}{1-x}dx}a\ da \\ & = \lim_{n \to \infty} \int_0^1 \frac {\int_0^a (1+x+x^2+\cdots +x^{n-1}) dx}a\ da \\ & = \lim_{n \to \infty} \int_0^1 \frac {x+\frac {x^2}2+ \frac {x^3}3+\cdots + \frac {x^n}n\big|_0^a}a\ da \\ & = \lim_{n \to \infty} \int_0^1 \frac {a+\frac {a^2}2+ \frac {a^3}3+\cdots + \frac {a^n}n}a\ da \\ & = \lim_{n \to \infty} \int_0^1 \left(1+\frac a2+ \frac {a^2}3+\cdots + \frac {a^{n-1}}n\right) da \\ & = \lim_{n \to \infty} \left[a+\frac {a^2}{2^2}+ \frac {a^3}{3^2}+\cdots + \frac {a^n}{n^2}\right]_0^1 \\ & = \sum_{n=1}^\infty \frac 1{n^2} = {\color{#3D99F6}\zeta (2)} = \boxed{\dfrac {\pi^2}6} & \small \color{#3D99F6} \text{where }\zeta(\cdot) \text{ denotes the Riemann zeta function.} \end{aligned}

Why did you assume that n n must be an integer?

Pi Han Goh - 3 years, 3 months ago

Log in to reply

Yes, you are right.

Chew-Seong Cheong - 3 years, 3 months ago

Please ...can u give a dierect proof of the infinte series result.

Hari Govind Sekhar - 3 years, 3 months ago

Log in to reply

It is the famous Basel problem solved by Euler. Check out the link .

Chew-Seong Cheong - 3 years, 3 months ago
Ryan Chou
Feb 23, 2018

Why did you assume that n n must be an integer?

Pi Han Goh - 3 years, 3 months ago

Log in to reply

assuming n is not an integer, the fraction expansion would have an extra (x^floor(n)-x^n)/(1-x). If x=0, then the fraction expansion would also be zero. If you then take the derivative of the fraction expansion in terms of x, you find that the derivative will be zero from 0 to 1 inclusive. Thus, the fraction expansion would have a value of zero from 0 to 1 and would be negligible.

Ryan Chou - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...