Impossible problem

Algebra Level 3

Let f ( x ) f\left( x \right) defined on R, f ( x ) = 4 x 4 x + 2 f\left( x \right) =\frac { { 4 }^{ x } }{ { 4 }^{ x }+2 } . What is the simplified value of f ( 1 n ) + f ( 2 n ) + . . . + f ( n 1 n ) ? f\left( \frac { 1 }{ n } \right) +f\left( \frac { 2 }{ n } \right) +...+f\left( \frac { n-1 }{ n } \right) ?

This problem is part of the set Hard Equations

1 2 ( n + 1 ) \frac { 1 }{ 2 } (n+1) n 2 \frac { n }{ 2 } 1 2 ( n 1 ) \frac { 1 }{ 2 } (n-1) 4 n + 1 \frac { 4 }{ n+1 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Uy
Dec 5, 2014

f ( x ) + f ( 1 x ) = 4 x 4 x + 2 + 4 1 x 4 1 x + 2 f(x)+f(1-x)=\frac { { 4 }^{ x } }{ 4^{ x }+2 } +\frac { { 4 }^{ 1-x } }{ { 4 }^{ 1-x }+2 }

= 4 x 4 x + 2 + 4 4 + 2 4 x =\frac { { 4 }^{ x } }{ 4^{ x }+2 } +\frac { { 4 } }{ { 4 }+2*{ 4 }^{ x } }

=1

Therefore,

f ( 1 n ) + f ( 2 n ) + . . . + f ( n 1 n ) = 1 2 ( n 1 ) f(\frac { 1 }{ n } )+f(\frac { 2 }{ n } )+...+f(\frac { n-1 }{ n } )=\frac { 1 }{ 2 } (n-1)

since you add the first and last term, the second and second last term, etc.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...