Impossible sum.

Function f : f: N N x N N N →N which satisfy

a. f ( n , n ) = n f(n,n)=n for all natural numbers n n .

b. f ( n , m ) = f ( m , n ) f(n,m)=f(m,n) for all natural numbers n , m n,m

c. f ( m , n + m ) f ( m , n ) = m + n n \frac{f(m,n+m)}{f(m,n)}=\frac{m+n}{n} for all natural numbers n , m n,m

Let S = 1 f ( 1 , 2 ) f ( 3 , 4 ) + 1 f ( 2 , 3 ) f ( 4 , 5 ) + 1 f ( 3 , 4 ) f ( 5 , 6 ) + . . . . S=\frac{1}{f(1,2)f(3,4)} + \frac{1}{f(2,3)f(4,5)} + \frac{1}{f(3,4)f(5,6)}+.... upto

Find sum of all possible values of S S correct upto 3 3 decimal places.


The answer is 0.056.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mathh Mathh
Jul 21, 2014

I'll assume 0 ∉ N 0\not\in\mathbb N (there are a lot of different definitions, hence I've pointed it out).

Fact 1:

f ( k , 1 ) = k , k N \displaystyle f(k,1)=k,\:\forall k\in\mathbb N

Proof by induction:

Notice that f ( 1 , 1 ) = 1 f(1,1)=1 .

Assume our statement is true when f ( k , 1 ) = k f(k,1)=k , where k N k\in\mathbb N .

We'll prove that f ( k + 1 , 1 ) = k + 1 f(k+1,1)=k+1 .

Whenever m = 1 , n = k m=1, n=k , we have f ( k + 1 , 1 ) f ( k , 1 ) = k + 1 k f ( k + 1 , 1 ) = k + 1 \displaystyle\frac{f(k+1,1)}{f(k,1)}=\frac{k+1}{k}\iff f(k+1,1)=k+1\square

Fact 2:

f ( m , m + 1 ) = m ( m + 1 ) , m N \displaystyle f(m,m+1)=m(m+1),\:\forall m\in\mathbb N

Proof:

Whenever n = 1 n=1 , we have \displaystyle \frac{f(m,m+1)}{f(m,1)}=m+1\stackrel{\text{Fact 1}}\iff f(m,m+1)=m(m+1), \:\forall m\in\mathbb N\square

Fact 2 lets us conclude that

S = 1 f ( 1 , 2 ) f ( 3 , 4 ) + 1 f ( 2 , 3 ) f ( 4 , 5 ) + \displaystyle S=\frac{1}{f(1,2)f(3,4)}+\frac{1}{f(2,3)f(4,5)}+\cdots = 1 1 2 3 4 + 1 2 3 4 5 + \displaystyle =\frac{1}{1\cdot 2\cdot 3\cdot 4}+\frac{1}{2\cdot 3\cdot 4\cdot 5}+\cdots = 0 ! 4 ! + 1 ! 5 ! + 2 ! 6 ! + \displaystyle =\frac{0!}{4!}+\frac{1!}{5!}+\frac{2!}{6!}+\cdots = 1 18 = 0.05555... 0.056 \displaystyle =\frac{1}{18}=0.05555...\approx \boxed{0.056}

The latter summation was calculated with some help from Wolfram Alpha .

I used partial fraction decomposition to get S = 1 / 6 1 / 6 + 1 / 18 S = 1/6 - 1/6 + 1/18 . This is a way to solve the problem without the help of Wolfram Alpha

Rindell Mabunga - 6 years, 10 months ago
Souryajit Roy
Jul 2, 2014

Note that f ( m , n ) = m m n f ( n , m n ) f(m,n)=\frac{m}{m-n}f(n,m-n)

Let g ( m , n ) = m n f ( m , n ) g(m,n)=\frac{mn}{f(m,n)}

Hence, 1. g ( n , n ) = n g(n,n)=n , g ( m , n ) g(m,n) = = g ( n , m ) g(n,m) , g ( m , n ) = m n f ( m , n ) = m n m m n f ( n , m n ) = g ( n , m n ) g(m,n)=\frac{mn}{f(m,n)}=\frac{mn}{\frac{m}{m-n}f(n,m-n)}=g(n,m-n)

Now use Euclidean algorithm to show g ( m , n ) = g c d ( m , n ) g(m,n)=gcd(m,n)

So, f ( m , n ) = l c m ( m , n ) f(m,n)=lcm(m,n)

S = r = 1 1 f ( r , r + 1 ) f ( r + 2 , r + 3 ) S=\sum_{r=1}^{∞}\frac{1}{f(r,r+1)f(r+2,r+3)}

Hence, S = r = 1 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) S=\sum_{r=1}^{∞}\frac{1}{r(r+1)(r+2)(r+3)}

For n n terms, S n = C 1 3 ( n + 1 ) ( n + 2 ) ( n + 3 ) S_{n}=C-\frac{1}{3(n+1)(n+2)(n+3)} where C C is a constant.

Letting n = 1 n=1 , C = 1 18 C=\frac{1}{18} .

So, S = 1 18 S=\frac{1}{18}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...