Improper Integral 2

Calculus Level 3

64 3 x 2 d x ( x 3 4 ) 3 = 1 H \large \int _{64}^\infty \frac {3x^2 \ dx}{ \left (\sqrt {x^3-4}\right)^3} =\frac 1{\sqrt H }

The equation above holds true for positive integer H H . Let H = 2 a 1 H = 2^a-1 ; find a a .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 15, 2017

I = 64 3 x 2 d x ( x 3 4 ) 3 Let u = x 3 4 , d u = 3 x 2 d x = 6 4 3 4 d u u 3 2 = 2 u 6 4 3 4 = 0 + 2 6 4 3 4 = 2 2 18 4 = 1 2 16 1 \begin{aligned} I & = \int_{64}^\infty \frac {3x^2 \ dx }{(\sqrt{x^3-4})^3} & \small \color{#3D99F6} \text{Let }u = x^3-4, \ du = 3x^2 \ dx \\ & = \int_{64^3-4}^\infty \frac {du}{u^\frac 32} \\ & = \frac {-2}{\sqrt u} \bigg|_{64^3-4}^\infty \\ & = 0 + \frac 2{\sqrt{64^3-4}} \\ & = \frac 2{\sqrt{2^{18}-4}} \\ & = \frac 1{\sqrt{2^{16}-1}} \end{aligned}

a = 16 \implies a = \boxed{16}

2 18 4 = 262144 4 = 262140 2 262140 1 65535 \sqrt { 2 ^ { 18 } - 4 } = \sqrt { 262144 - 4 } = \sqrt { 262140 } \rightarrow \frac { 2 } { \sqrt { 262140 } } \rightarrow \frac { 1 } { \sqrt { 65535 } }

1 2 16 1 = 1 65536 1 = 1 65535 \frac { 1 } { \sqrt { 2 ^ { 16 } - 1 } } = \frac { 1 } { \sqrt { 65536 - 1 } } = \frac { 1 } { \sqrt { 65535 } } .

The values are same?

. . - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...