Improper Integral

Calculus Level 4

0 d x ( 1 + x ) 2 ( 1 + x α ) = ? \large\int_0^\infty\frac{dx}{(1+x)^2(1+x^\alpha)} = \, ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Integration Tricks

I = 0 d x ( 1 + x ) 2 ( 1 + x α ) Using the identity: 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x = 1 2 0 ( 1 ( 1 + x ) 2 ( 1 + x α ) + 1 x 2 ( 1 + 1 x ) 2 ( 1 + 1 x α ) ) d x = 1 2 0 ( 1 ( 1 + x ) 2 ( 1 + x α ) + x α ( 1 + x ) 2 ( 1 + x α ) ) d x = 1 2 0 d x ( 1 + x ) 2 = 1 2 [ 1 1 + x ] 0 = 1 2 = 0.5 \begin{aligned} I & = \int_0^\infty \frac {dx}{(1+x)^2(1+x^\alpha)} & \small \color{#3D99F6} \text{Using the identity: }\int_0^\infty f(x)\ dx = \int_0^\infty \frac {f\left(\frac 1x\right)}{x^2} dx \\ & = \frac 12 \int_0^\infty \left(\frac 1{(1+x)^2(1+x^\alpha)} + \frac 1{x^2\left(1+\frac 1x\right)^2 \left(1+\frac 1{x^\alpha}\right)} \right) dx \\ & = \frac 12 \int_0^\infty \left(\frac 1{(1+x)^2(1+x^\alpha)} + \frac {x^\alpha}{(1+x)^2(1+x^\alpha)} \right) dx \\ & = \frac 12 \int_0^\infty \frac {dx}{(1+x)^2} \\ & = \frac 12 \left[ - \frac 1{1+x} \right]_0^\infty = \frac 12 = \boxed{0.5} \end{aligned}

Brian Lie
Mar 5, 2018

I = 0 d x ( 1 + x ) 2 ( 1 + x α ) = 0 1 d x ( 1 + x ) 2 ( 1 + x α ) + 1 d x ( 1 + x ) 2 ( 1 + x α ) Transform variables to t = 1 x , d t = d x x 2 = 0 1 d x ( 1 + x ) 2 ( 1 + x α ) + 0 1 t α ( 1 + t ) 2 ( 1 + t α ) d t = 0 1 d x ( 1 + x ) 2 = [ 1 1 + x ] 0 1 = 1 2 = 0.5 \begin{aligned} I&=\int_0^\infty\frac{dx}{(1+x)^2(1+x^\alpha)}\\ &=\int_0^1\frac{dx}{(1+x)^2(1+x^\alpha)}+\color{#3D99F6}\large\int_1^\infty\frac{dx}{(1+x)^2(1+x^\alpha)}&\color{#3D99F6}\text{Transform variables to }t=\frac{1}{x},\ dt=-\frac{dx}{x^2}\\ &=\int_0^1\frac{dx}{(1+x)^2(1+x^\alpha)}+\large\int_0^1\frac{t^\alpha}{(1+t)^2(1+t^\alpha)}dt\\ &=\int_0^1\frac{dx}{(1+x)^2}\\ &=\left[-\frac{1}{1+x}\right]_0^1=\frac12=\boxed{0.5} \end{aligned}

Aaghaz Mahajan
Mar 8, 2018

All these solutions are pretty nice, but for a JEE shortcut, simply put alpha=1 and solve!!!!

why 1, just put it zero

Kunal Gupta - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...