Improper Integrals

Calculus Level 3

0 x e x d x = ? \large \int_{-\infty}^0 xe^x \, dx = \, ?


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: L'Hopital's Rule - Basic

The improper integral can be solved by integration by parts using f = e x f' = e^x and g = x g = x .

I = 0 x e x d x = x e x 0 0 e x d x = 0 0 e x 0 See Note. = 1 \begin{aligned} I & = \int_{-\infty}^0 x e^x \ dx \\ & = xe^x \ \big|_{-\infty}^0 - \int_{-\infty}^0 e^x \ dx \\ & = 0 - {\color{#3D99F6}0} - e^x \ \big|_{-\infty}^0 & \small {\color{#3D99F6}\text{See Note.}} \\ & = \boxed{- 1} \end{aligned}


Note:

lim x x e x = lim x x e x A / case, L’H o ˆ pital’s rule applies. = lim x 1 e x Differentiate up and down w.r.t. x = 0 \begin{aligned} \lim_{x \to -\infty} xe^x & = \lim_{x \to -\infty} \frac x{e^{-x}} & \small {\color{#3D99F6} \text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.}} \\ & = \lim_{x \to -\infty} \frac 1{-e^{-x}} & \small {\color{#3D99F6} \text{Differentiate up and down w.r.t. }x} \\ & = 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...