Find the value of the constant k for which the integral ∫ 0 ∞ x 2 + 9 k − x 2 + 4 3 x d x converges.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The integral is simply k ln 3 x + x 2 + 9 − 2 3 ln ( x 2 + 4 ) evaluated between the limits x = ∞ and x = 0 .
It's value at x = 0 is − 3 ln 2 which is convergent, therefore, we now just need to find the value of k such that its value at x = ∞ is convergent.
This is x → ∞ lim ( k ln 3 x + x 2 + 9 − 2 3 ln ( x 2 + 4 ) ) .
Substituting x = 3 tan θ and simplifying the limit, we get:
θ → 2 π lim ln ⎝ ⎛ ( 5 sin 2 θ + 4 ) 2 3 ( 1 + sin θ ) k ⋅ cos 3 − k θ ⎠ ⎞
= ln ⎝ ⎛ θ → 2 π lim ( 5 sin 2 θ + 4 ) 2 3 ( 1 + sin θ ) k ⋅ θ → 2 π lim cos 3 − k θ ⎠ ⎞
= ln ( 2 7 2 k ⋅ θ → 2 π lim cos 3 − k θ )
Now, let's look at the following cases:
Case 1: k > 3
In this case, the expression inside ln is of the form 0 n o n z e r o , which certainly accounts for a divergent value.
Case 2: k < 3
In this case, the expression inside ln is always going to be 0 , but this leads us to ln 0 , which is again a sign of divergence.
Case 3: k = 3
In this case, the expression is equal to ln ( 2 7 8 ) and is convergent. Hence, for k = 3 the integral will have a convergent value.
Also, the integral then equals to ln ( 2 7 8 − ( − 3 ln 2 ) ) = ln ( 2 7 6 4 ) = 3 ln ( 3 4 )
We can evaluate:
∫ 0 ∞ x 2 + 9 k − x 2 + 4 3 x d x = k sinh − 1 ( 3 x ) − 2 3 ln ∣ x 2 + 4 ∣
With a few calculations, we get
ln ∣ ∣ ∣ ∣ ∣ ( x 2 + 4 ) x 2 + 4 ( x + x 2 + 9 ) k ∣ ∣ ∣ ∣ ∣
To make it converge when x → ∞ , k = 3 .
Problem Loading...
Note Loading...
Set Loading...
For sufficiently large x , the integrand can be approximated as
( x 2 + 4 ) x 2 + 9 k x 2 + 4 x − 3 x x 2 + 9 ≈ x 2 ⋅ x k x 2 − 3 x 2 = x 3 x 2 ( k − 3 ) = x k − 3 .
This means that for some gigantic number N , ∫ 0 ∞ ( x 2 + 9 k − x 2 + 4 3 x ) d x = ≈ ∫ 0 N ( x 2 + 9 k − x 2 + 4 3 x ) d x + ∫ N ∞ ( x 2 + 9 k − x 2 + 4 3 x ) d x ∫ 0 N ( x 2 + 9 k − x 2 + 4 3 x ) d x + ∫ N ∞ x k − 3 d x
The latter integral diverges when k − 3 = 0 .
What's left to do is to prove that the integral in question converges when k = 3 .
∫ 0 ∞ ( x 2 + 9 3 − x 2 + 4 3 x ) d x = 3 ∫ 0 ∞ ( x 2 + 9 1 − x 2 + 4 x ) d x
Recall that d x d sinh − 1 x = x 2 + 1 1 and d x d ln x = x 1 . The integral can be expressed as 3 [ sinh − 1 ( 3 x ) − 2 1 ln ( x 2 + 4 ) ] x = 0 x → ∞ = 3 [ y → ∞ lim f ( y ) − f ( 0 ) ] , where f ( z ) = sinh − 1 ( 3 z ) − 2 1 ln ( z 2 + 4 ) .
f ( 0 ) can easily be evaluated to be − ln 2 .
We are left to evaluate y → ∞ lim sinh − 1 ( 3 y ) − 2 1 ln ( y 2 + 4 ) .
By definition, sinh − 1 x = ln ( x + x 2 + 1 ) . The limit becomes y → ∞ lim ln ( 3 y + ( 3 y ) 2 + 1 ) − 2 1 ln ( y 2 + 4 ) = = = = = y → ∞ lim [ ln ( 3 1 ) + ln ( y + y 2 + 9 ) − 2 1 ln ( y 2 + 4 ) ] y → ∞ lim [ − ln 3 + 2 1 ln ( y + y 2 + 9 ) 2 − 2 1 ln ( y 2 + 4 ) ] − ln 3 + 2 1 y → ∞ lim ln y 2 + 4 ( y + y 2 + 9 ) 2 − ln 3 + 2 1 ln ( y → ∞ lim y 2 + 4 2 y 2 + 9 + 2 y y 2 + 9 ) − ln 3 + 2 1 ln ( y → ∞ lim 1 + 4 / y 2 2 + 9 / y 2 + 2 1 + 9 / y 2 ) = ln 2 − ln 3 Putting it all together, the integral is equal to 3 ln ( 3 4 ) when k = 3 .
Hence, the integral only converges when k = 3 .