Improper integrals

Calculus Level 4

Find the value of the constant k k for which the integral 0 k x 2 + 9 3 x x 2 + 4 d x \displaystyle \int_{0}^{\infty } \frac{k}{\sqrt{x^2+9}}- \frac{3x}{x^2+4} dx converges.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Mar 28, 2019

For sufficiently large x x , the integrand can be approximated as

k x 2 + 4 x 3 x x 2 + 9 ( x 2 + 4 ) x 2 + 9 k x 2 3 x 2 x 2 x = x 2 ( k 3 ) x 3 = k 3 x . \dfrac{k x^2 + 4x - 3x \sqrt{x^2 + 9} } { (x^2 + 4) \sqrt{x^2 + 9} } \approx \dfrac{ kx^2 - 3x^2}{ x^2 \cdot x} = \dfrac{x^2(k-3)}{x^3} = \dfrac{k-3}x .

This means that for some gigantic number N N , 0 ( k x 2 + 9 3 x x 2 + 4 ) d x = 0 N ( k x 2 + 9 3 x x 2 + 4 ) d x + N ( k x 2 + 9 3 x x 2 + 4 ) d x 0 N ( k x 2 + 9 3 x x 2 + 4 ) d x + N k 3 x d x \begin{aligned} \int_0^\infty \left( \dfrac k{\sqrt{x^2+9}} - \dfrac{3x}{x^2 + 4} \right) \, dx &=& \int_0^N \left( \dfrac k{\sqrt{x^2+9}} - \dfrac{3x}{x^2 + 4} \right) \, dx + \int_N^\infty \left( \dfrac k{\sqrt{x^2+9}} - \dfrac{3x}{x^2 + 4} \right) \, dx \\ &\approx & \int_0^N \left( \dfrac k{\sqrt{x^2+9}} - \dfrac{3x}{x^2 + 4} \right) \, dx + \int_N^\infty \dfrac {k-3}x \, dx \end{aligned}

The latter integral diverges when k 3 0 k - 3 \ne 0 .

What's left to do is to prove that the integral in question converges when k = 3 k=3 .

0 ( 3 x 2 + 9 3 x x 2 + 4 ) d x = 3 0 ( 1 x 2 + 9 x x 2 + 4 ) d x \int_0^\infty \left( \dfrac 3{\sqrt{x^2+9}} - \dfrac{3x}{x^2 + 4} \right) \, dx = 3 \int_0^\infty \left( \dfrac 1{\sqrt{x^2+9}} - \dfrac{x}{x^2 + 4} \right) \, dx \\

Recall that d d x sinh 1 x = 1 x 2 + 1 \dfrac d{dx} \text{sinh}^{-1} x = \dfrac1{\sqrt{x^2 + 1}} and d d x ln x = 1 x \dfrac d{dx} \ln x= \dfrac 1x . The integral can be expressed as 3 [ sinh 1 ( x 3 ) 1 2 ln ( x 2 + 4 ) ] x = 0 x = 3 [ lim y f ( y ) f ( 0 ) ] , 3 \left [ \text{sinh}^{-1} \left( \frac x3 \right) - \frac12 \ln(x^2 + 4) \right]_{x=0}^{x\to\infty} = 3 \left [ \lim_{y\to\infty} f(y) - f(0) \right ] , where f ( z ) = sinh 1 ( z 3 ) 1 2 ln ( z 2 + 4 ) f(z) = \text{sinh}^{-1} \left( \frac z3 \right) - \frac12 \ln(z^2 + 4) .

f ( 0 ) f(0) can easily be evaluated to be ln 2 -\ln 2 .

We are left to evaluate lim y sinh 1 ( y 3 ) 1 2 ln ( y 2 + 4 ) \displaystyle \lim_{y\to\infty} \text{sinh}^{-1} \left( \frac y3 \right) - \frac12 \ln(y^2 + 4) .

By definition, sinh 1 x = ln ( x + x 2 + 1 ) \text{sinh}^{-1} x = \ln\left(x + \sqrt{x^2 + 1} \right) . The limit becomes lim y ln ( y 3 + ( y 3 ) 2 + 1 ) 1 2 ln ( y 2 + 4 ) = lim y [ ln ( 1 3 ) + ln ( y + y 2 + 9 ) 1 2 ln ( y 2 + 4 ) ] = lim y [ ln 3 + 1 2 ln ( y + y 2 + 9 ) 2 1 2 ln ( y 2 + 4 ) ] = ln 3 + 1 2 lim y ln ( y + y 2 + 9 ) 2 y 2 + 4 = ln 3 + 1 2 ln ( lim y 2 y 2 + 9 + 2 y y 2 + 9 y 2 + 4 ) = ln 3 + 1 2 ln ( lim y 2 + 9 / y 2 + 2 1 + 9 / y 2 1 + 4 / y 2 ) = ln 2 ln 3 \begin{aligned} \displaystyle \lim_{y\to\infty} \ln \left(\frac y3 + \sqrt{\left( \frac y3\right)^2 + 1} \right) - \frac12 \ln(y^2 + 4) &=& \displaystyle \lim_{y\to\infty} \left [ \ln\left(\frac13\right) + \ln\left(y + \sqrt{y^2 + 9}\right) - \frac12\ln(y^2 + 4)\right ] \\ &=& \displaystyle \lim_{y\to\infty} \left [ -\ln3 + \frac12 \ln\left(y + \sqrt{y^2 + 9}\right)^2 - \frac12\ln(y^2 + 4) \right ] \\ &=& \displaystyle -\ln3 + \frac12 \lim_{y\to\infty} \ln\dfrac{\left(y + \sqrt{y^2 + 9}\right)^2}{y^2 + 4} \\ &=& \displaystyle -\ln3 + \frac12 \ln \left( \lim_{y\to\infty} \dfrac{2y^2 + 9 + 2y \sqrt{y^2+9}}{y^2 + 4} \right) \\ &=& \displaystyle -\ln3 + \frac12 \ln \left( \lim_{y\to\infty} \dfrac{2 + 9/y^2 + 2 \sqrt{1 +9/y^2}}{1 + 4/y^2} \right) = \ln2 - \ln3 \\ \end{aligned} Putting it all together, the integral is equal to 3 ln ( 4 3 ) 3 \ln\left ( \frac43\right) when k = 3 k=3 .

Hence, the integral only converges when k = 3 k=\boxed3 .

The integral is simply k ln x + x 2 + 9 3 3 2 ln ( x 2 + 4 ) k\ln\frac{x+\sqrt{x^2+9}}{3}-\frac{3}{2}\ln\left(x^2+4\right) evaluated between the limits x = x = \infty and x = 0 x = 0 .

It's value at x = 0 x = 0 is 3 ln 2 -3 \ln2 which is convergent, therefore, we now just need to find the value of k k such that its value at x = x = \infty is convergent.

This is lim x ( k ln x + x 2 + 9 3 3 2 ln ( x 2 + 4 ) ) \displaystyle \lim_{x \to \infty} \left(k\ln\frac{x+\sqrt{x^2+9}}{3}-\frac{3}{2}\ln\left(x^2+4\right)\right) .

Substituting x = 3 tan θ x=3\tan\theta and simplifying the limit, we get:

lim θ π 2 ln ( ( 1 + sin θ ) k ( 5 sin 2 θ + 4 ) 3 2 cos 3 k θ ) \displaystyle \lim_{\theta \to \frac{\pi}{2}} \ln\left(\frac{\left(1+\sin\theta\right)^k}{\left(5\sin^2\theta+4\right)^{\frac{3}{2}}}\cdot\cos^{3-k}\theta\right)

= ln ( lim θ π 2 ( 1 + sin θ ) k ( 5 sin 2 θ + 4 ) 3 2 lim θ π 2 cos 3 k θ ) \displaystyle = \ln\left(\lim_{\theta \to \frac{\pi}{2}} \frac{\left(1+\sin\theta\right)^k}{\left(5\sin^2\theta+4\right)^{\frac{3}{2}}}\cdot\lim_{\theta \to \frac{\pi}{2}} \cos^{3-k}\theta\right)

= ln ( 2 k 27 lim θ π 2 cos 3 k θ ) \displaystyle = \ln\left(\frac{2^k}{27}\cdot \lim_{\theta \to \frac{\pi}{2}} \cos^{3-k}\theta\right)

Now, let's look at the following cases:

Case 1: k > 3

In this case, the expression inside ln \ln is of the form n o n z e r o 0 \frac{nonzero}{0} , which certainly accounts for a divergent value.

Case 2: k < 3

In this case, the expression inside ln \ln is always going to be 0 0 , but this leads us to ln 0 \ln 0 , which is again a sign of divergence.

Case 3: k = 3

In this case, the expression is equal to ln ( 8 27 ) \ln(\frac{8}{27}) and is convergent. Hence, for k = 3 \boxed{k = 3} the integral will have a convergent value.

Also, the integral then equals to ln ( 8 27 ( 3 ln 2 ) ) = ln ( 64 27 ) = 3 ln ( 4 3 ) \ln(\frac{8}{27} - (- 3 \ln 2)) = \ln(\frac{64}{27}) = 3 \ln(\frac{4}{3})

Pepper Mint
Mar 29, 2019

We can evaluate:

0 k x 2 + 9 3 x x 2 + 4 d x = k sinh 1 ( x 3 ) 3 2 ln x 2 + 4 \displaystyle\int_{0}^{\infty}{\dfrac{k}{\sqrt{x^2+9}}-\dfrac{3x}{x^2+4}}dx=k\sinh^{-1}\left(\dfrac{x}{3}\right)-\dfrac{3}{2}\ln|x^2+4|

With a few calculations, we get

ln ( x + x 2 + 9 ) k ( x 2 + 4 ) x 2 + 4 \ln\left|\dfrac{(x+\sqrt{x^2+9})^k}{(x^2+4)\sqrt{x^2+4}}\right|

To make it converge when x x \rightarrow \infty , k = 3 k=\boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...