You Don't Need A Calculator!

Algebra Level 1

Which is greater ?

6 + 5 or 5 + 6 \large \color{#302B94}{\sqrt{6+\sqrt{5} }}~~~~\text{or}~~~~\color{#69047E}{\sqrt{5+\sqrt{6} } }

6 + 5 \sqrt{6+\sqrt{5} } 5 + 6 \sqrt{5+\sqrt{6} } Both are equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let x = 6 + 5 x = \sqrt{6 + \sqrt{5}} and y = 5 + 6 . y = \sqrt{5 + \sqrt{6}}. Since both x x and y y are positive, it will suffice to compare x 2 x^{2} and y 2 . y^{2}.

Now x 2 y 2 = 6 + 5 ( 5 + 6 ) = 1 ( 6 5 ) > 1 ( 9 4 ) = 1 1 = 0. x^{2} - y^{2} = 6 + \sqrt{5} - (5 + \sqrt{6}) = 1 - (\sqrt{6} - \sqrt{5}) \gt 1 - (\sqrt{9} - \sqrt{4}) = 1 - 1 = 0.

Thus x 2 > y 2 , x^{2} \gt y^{2}, implying that x > y , x \gt y, i.e., the greater value is 6 + 5 . \boxed{\sqrt{6 + \sqrt{5}}}.

Follow-up question: For what value x 0 x \ge 0 is the function y = x + 1 + x x + x + 1 y = \sqrt{x + 1 + \sqrt{x}} - \sqrt{x + \sqrt{x + 1}} maximized?

Brian Charlesworth - 5 years, 7 months ago
Michael Fuller
Nov 11, 2015

6 + 5 = 5 + 5 + 1 5 + 5 + 1 ? 5 + 6 \large \color{#302B94}{\sqrt{6+\sqrt{5}} = \sqrt{5+\sqrt{5}+1 }} \\ \large \color{#302B94}{\sqrt{5+\sqrt{5}+1 }} ~~~\boxed{?}~~~ \color{#69047E}{\sqrt{5+\sqrt{6} } }

So all we need to find out now is which is greater, 5 + 1 \sqrt{5}+1 or 6 \sqrt{6} . Square both sides and the answer will become clear:

5 + 1 ? 6 ( 5 + 1 ) 2 ? ( 6 ) 2 5 + 2 5 + 1 ? 6 6 + 2 5 > 6 \large \sqrt{5}+1 ~~~\boxed{?}~~~ \sqrt{6} \\ \large {(\sqrt{5}+1)}^{2} ~~~\boxed{?}~~~ {(\sqrt{6})}^{2} \\ \large 5+2\sqrt{5}+1 ~~~\boxed{?}~~~ 6 \\ \large 6+2\sqrt{5} ~~~\boxed{>}~~~ 6

Hence 6 + 5 > 5 + 6 \large \sqrt{6+\sqrt{5}} > \sqrt{5+\sqrt{6}} , so our answer is 6 + 5 \large \color{#20A900}{\boxed{\sqrt{6+\sqrt{5}}}} .

Lu Chee Ket
Nov 30, 2015

Since 3 > 5 \sqrt5 > 2, and 3 > 6 \sqrt6 > 2:

6 + 2+ > 8 while 5 + 2+ < 8.

Obviously, 6 + 5 \sqrt{6 + \sqrt5} > 5 + 6 \sqrt{5 + \sqrt6} .

Answer: 6 + 5 \boxed{\sqrt{6 + \sqrt5}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...