In fact, it is very simple.

Calculus Level 4

Evaluate the following integral. 8 13 x 2 x 2 + x 2 42 x + 441 d x \int_{8}^{13} \dfrac{\lfloor x^2 \rfloor}{\lfloor x^2 \rfloor + \lfloor x^2-42x+441 \rfloor}dx

Notation: . . \lfloor .. \rfloor denotes floor function .


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prasun Biswas
Nov 21, 2014

Let 8 13 x 2 x 2 + x 2 42 x + 441 d x = I ( i ) \displaystyle \large \int_8^{13} \frac{\lfloor x^2 \rfloor}{\lfloor x^2 \rfloor + \lfloor x^2-42x+441 \rfloor} dx = I \ldots (i)

Using the property a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle \large \int_a^b f(x) dx = \int_a^b f(a+b-x) dx , and a little calculation, we get,

8 13 x 2 42 x + 441 x 2 + x 2 42 x + 441 d x = I ( i i ) \displaystyle \large \int_8^{13} \frac{\lfloor x^2-42x+441 \rfloor}{\lfloor x^2 \rfloor + \lfloor x^2-42x+441 \rfloor} dx = I \ldots (ii)

Adding (i) and (ii), we get,

2 I = 8 13 x 2 + x 2 42 x + 441 x 2 + x 2 42 x + 441 d x \displaystyle \large 2I=\int_8^{13} \frac{\lfloor x^2 \rfloor + \lfloor x^2-42x+441 \rfloor}{\lfloor x^2 \rfloor + \lfloor x^2-42x+441 \rfloor} dx

2 I = 8 13 d x \implies \displaystyle \large 2I=\int_8^{13} dx

2 I = [ x ] 8 13 = 13 8 = 5 \implies \displaystyle \large 2I= [x]_8^{13} = 13-8 = 5

I = 5 2 = 2.5 \implies \displaystyle \large I=\frac{5}{2} = \boxed{2.5}

you can save your time in calculation if you in your mind orally thinks that:

( x 21 ) 2 = x 2 42 x + 441 (x-21)^2 = x^2 - 42x + 441 .

Karan Shekhawat - 6 years, 6 months ago

highly-highly-highly overrated problem

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...